




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西 安 建 筑 科 技 大 学 研 究 生 课 程 考 试 试 卷考试科目:人工神经网络课程编码:071032任课教师:谷立臣 考试时间:学 号:1107210704学生姓名:景理题号成 绩总 成 绩学 分123456阅卷人签字789试题总页数10som 神经网络在旋转机械故障诊断中的应用【摘 要】研究和分析了自组织映射(som)神经网络的结构和算法,把 som 网络应用在旋转机械故障诊断中,利用振动传感器拾取振动信号,通过对时域、频域的分析来提取特征。通过对输入样本的“聚类”,实现对故障的自动分类。这种故障的分类通过 matlab 更容易实现可视化的界面。仿真结果表明该方法可以对故障进行有效、准确地诊断,从而为旋转机械的故障诊断提供了一种新的途径。关键词:旋转机械;som 神经网络;故障诊断1 引言 旋转机械是工业生产的直接驱动力,是石油、矿山、电力等重要生产部门中的关键生产工具,往往一个零件出现故障,整个设备都不能工作,对整个生产造成很大的损失。由于价格昂贵,一般都不配备备用设备。如何做到在旋转机械运行或停机时,在基本不拆卸的情况下,掌握机器的运行情况,判定系统故障的部位、起因、严重程度,并提出相应的解决方案,非常重要。神经网络具有并行分布式处理、联想记忆、自组织及自学习能力和极强的非线性映射特性,能对复杂的信息进行识别处理并给予准确的分类。因此可以通过神经网络理论进行故障诊断。由于 som 人工神经网络具有网络结构简单、自组织自学习能力强和学习速度快等优点,本文将采用 som 人工神经网络。实验结果表明这种方法具有很好的实用性。2 som神经网络诊断方法2.1som神经网络结构som人工神经网络是一个可以在一维或二维的处理单元阵列上,形成输入信号的特征拓扑分布,结构如图一所示。网络模拟了人类大脑神经网络自组织特征映射的功能。该网络由输入层和输出层组成,其中输入层的神经元个数的选取按输入网络的向量个数而定,输入神经元为一维矩阵,接收网络的输入信号,输出层则是由神经元按一定的方式排列成一个二维节点矩阵。输入层的神经元与输出层的神经元通过权值相互联结在一起。当网络接收到外部的输入信号以后,输出层的某个神经元便会兴奋起来。som网络模型由以下4个部分组成:(1) 处理单元阵列。由于接收事件的输入,并且形成对这些信号的判别函数。(2) 比较选择机制。用于比较判别函数,并选择一个具有最大函数输出值的处理单元(3) 局部互联作用。用于同时激励被选择的处理单元及其最邻近的处理单元。(4) 自适应过程。用于修正被激励的处理单元的参数,以增加其对应于特定输入判别函数的输出值。 图1、som神经网络模型2.2 som网络的训练方法som神经网络采用的算法称为kohonen算法,它的基本思想是:网络输出层的各神经元通过竞争来获得对输入层的响应机会,最后只有一个神经元获胜。获胜的神经元对它临近的神经元的影响由近及远,由兴奋逐渐转为抑制,那些与获胜神经元有关的各连接权朝着有利于它竞争的方向转变。som网络的算法如下:(1)初始化对输出层各权向量赋予较小的随机数并进行归一化处理,得到,建立初始优胜邻域和学习率初值。为输出层神经元数目。(2)接受输入从训练集中随机取一输入模式并进行归一化处理,得到,为输入层神经元数目。(3)寻找获胜节点计算和的点积,从中找到点积最大的获胜节点。如果输入模式未经归一化,应按式计算欧式距离,从中找出距离最小的获胜节点 (4)定义优胜邻域设为中心确定时刻的权值调整域,一般初始邻域较大,训练过程中随训练时间收缩。(5)调整权值对优胜邻域内的所有节点调整权值 式中 (6)结束判定当学习率结束训练;不满足结束条件时,转到步骤(2)继续。图2、som网络训练流程图2.3 som网络可视化在旋转机械故障中,应用可视化技术可以简洁明了观察到故障的类别。对于 som网络的训练结果而言,目前较多的是利用 u 矩阵法(unified matrix ,简称 u- matrix)来显示聚类训练结果,即 u 矩阵图。som网络竞争层的每个神经元都拥有一个二维坐标,分别计算每个神经元与相邻神经元权值向量之间的距离,并取这些距离值的平均值作为该神经元的第三维坐标值,即神经元的高度,如图 3 所示图3.u矩阵示意图假设som网络而输入层为维,竞争层的结构为,每个神经元的坐标为,其权值向量为。则神经元与其相邻神经元的距离为:神经元与其相邻神经元的距离为:神经元与其相邻神经元的距离为:该矩阵结构有,其中神经元高度值用灰度表示,在二维平面上显示自组织网络训练结果,即可得到 u 矩阵图。u 矩阵图的灰度分布,用于表示输入模式的聚类倾向:灰色区域对应较大的 u 矩阵值,用于表示类别边界,白色则对应较小的 u矩阵值,用于表示聚类中心。3 旋转机械故障诊断的步骤 对旋转机械进行故障诊断的大体步骤如下四步: (1)选取具有典型特征的故障样本; (2)对具有典型特征的故障样本进行学习,学习完成后,对输出的获胜神经 标上该故障的记号; (3)把需要检测的样本输入到 som 网络中进行学习; (4)把待检测样本输出神经元的位置和标准输出的位置进行比较,和哪种故 故障样本的输出位置相同,说明待检测样本就是哪种故障。如果和几种 输出的位置都比较接近,说明这几种故障都有可能发生,主要看待检测 样本输出的位置和哪种标准输出的位置之间的欧式距离最近。4 som 网络在旋转机械故障诊断中的应用4.1 旋转机械常见故障形式 故障诊断是通过提取设备状态的特征向量,在向量空间内,对故障类型进行分类。对大型旋转机械,通常拾取振动信号,通过对时域、频域的分析来确定故障类型。通过大量的分析和研究,旋转机械的典型故障有:(1)不平衡(p1)(2)不对中(p2)(3)油膜涡动(p3)(4)油膜振荡(p4)(5)喘振(p5)(6)轴向碰磨(p6)(7)横向裂纹(p7)(8)联轴器损坏(p8)(9)轴承座松动(p9)(10)不等轴承刚度(p10)4.2 采集数据样本 经过大量的试验、测试,分别对机组中需要测试的部位在未带负荷和带负荷状况下,用振动传感器进行测试。经过数据采集系统和分析软件的处理,对各个测点进行数据采集。采集各种故障状态下的数据,形成标准样本数据和待检测数据。振动监测系统结构,如图4所示。采集后的样本数据经过处理后,如表 1所示。图4、震动监测系统结构图表 1 旋转机械故障样本故障类型123456789p1不平衡0.000.000.000.000.900.050.050.000.00p2不对中0.000.000.000.000.400.500.100.000.00p3油膜涡动0.100.800.000.100.000.000.000.000.00p4油膜震动0.000.001.000.000.000.000.000.000.00p5喘振0.700.000.000.000.300.000.000.000.00p6轴向碰磨0.100.050.050.100.3000.00p7横向裂纹0.000.000.000.000.200.400p8联轴器损坏00.000.200.300.100.000.00p9轴承座松动0.900.000.000.000.000.000.000.100.00p10不等轴承刚度0.000.000.000.000.000.800.200.000.004.3采集数据样本仿真实验 设计网络结构:(1)输入层:10 个节点(神经元);(2)输出层:99=81 个节点(神经元)。如图5所示,利用matlab神经网络工具箱对标准故障样本进行训练,训练后各种故障在竞争层中的分布,如图5所示。p1、p2p10共10种故障均匀的分布在输出层所在平面对应的神经元上。som神经网络完成训练后,对每个输入都有特定的输出层神经元与之对应。这种输入输出的对应关系在输出的平面中表现的非常清楚。p3p9p4p5p8p6p7p1p10p2图5.标准样本训练结果图为了检验som神经网络对旋转机械故障诊断的准确度,待检测样,如表2所示,把表2中待检验的样本送入网络中进行训练。表 2 待检测样本序号故障类型123456789t1p2不对中0.000.000.000.000.5000.00t2p4油膜震荡0.000.000.001.000.000.050.000.000.00t3p6轴向碰磨50.050.3000.00程序运行:p3p9p4p5p8p6t 2t 3p7p1p10p2t1图6、待检测样本仿真结果图 如图6 所示,可以看出测试样本 t1和 p2重合为第二种故障(不对中);测试样本 t2、t3和 p6重合为第六种故障(轴向碰磨);问题:t2和p6匹配,是因为输出层神经元个数的选取,个数过多增加计算量,降低学习的速度;数目过少,可能把两种模式相近的故障诊断为同一种故障。和待检测样本对比,可以看到利用 som 网络诊断结果和测试结果基本一致,证明该方法对于旋转机械常见故障的诊断是完全有效可行的。5、 结论 利用 som 神经网络对输入样本的“聚类”作用,实现了对故障样本的分类。由于输出层神经元对输入层神经元有特定的响应关系,这种响应关系很容易实现图形的可视化。从而使故障的分类更加直观。同时输出层神经元的选取如果不当,可能造成对模式相近的故障不能明显区分,这是由网络算法决定的。附录: p=0.00 0.00 0.00 0.00 0.90 0.05 0.05 0.00 0.00;0.00 0.00 0.00 0.00 0.40 0.50 0.10 0.00 0.00;0.10 0.80 0.00 0.10 0.00 0.00 0.00 0.00 0.00;0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00;0.70 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00;0.10 0.05 0.05 0.10 0.30 0.10 0.10 0.10 0.00;0.00 0.00 0.00 0.00 0.20 0.40 0.20 0.20 0.00;0.10 0.20 0.10 0.00 0.20 0.30 0.10 0.00 0.00;0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00;0.00 0.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00;net=newsom(minmax(p),9 9);net=train(net,p);y=sim(net,p);yc=vec2ind(y);%输出聚类结果yc_99=y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电竞公司质量改进管理规章
- 农业科技化智能种植与养殖技术推广应用方案设计
- 重庆城市职业学院单招《物理》全真模拟模拟题含完整答案详解【各地真题】
- 大数据应用场景开发作业指导书
- 重难点解析青岛版8年级数学下册期末试卷及答案详解【基础+提升】
- 三农村合作社财务管理操作手册
- 上海市黄浦区市级名校2026届化学高二第一学期期中预测试题含解析
- 石油天然气行业智能化勘探与开发方案
- 农民工返乡创业扶持手册
- (2025年标准)果树修剪协议书
- 2025年芜湖市鸠江区医院招聘16名工作人员笔试参考题库附答案解析
- T-CBDA 86-2025 建筑幕墙、采光顶及金属屋面工程质量验收标准
- 厨房消防安全培训
- 《海上风电场工程测量规程》(NB-T 10104-2018)
- 【公开课】北师大版四年级上册数学《乘法分配律说课》课件
- 广东省义务教育阶段学生转学申请表
- 挫折是成长的必修课主题教育PPT模板
- 德勤美团-中国医美市场趋势洞察报告-2021.01正式版
- 网络摄像机-模组接口规格书精简板
- 社工政策与法规
- 绿茶多酚及超级灵芝萃取物与预防癌症之关系博士
评论
0/150
提交评论