




已阅读5页,还剩100页未读, 继续免费阅读
(控制理论与控制工程专业论文)智能压力传感器的研究与开发.pdf.pdf 免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
s h a a n x iu n i v e r s i t yo fs c i e n c ea n dt e c h n o l o g yi np a r t i a lf u l f i l l m e n to ft h er e q u i r e m e n tf o rt h ed e g r e eo fm a s t e ro fe 望g i 望竺皇! = i 坠gt h e s i s ( o rd i s s e r t a t i o n ) s u p e r v i s o r :a s s o c i a t ep r o f e s s o r 蛐m a y , 2 0 1 0智能压力传感器的研究与开发摘要为了提高压力传感器的精度,丰富压力传感器的功能设计了一种新型的智能压力传感器。该压力传感器以m s p 4 3 0 单片机为控制核心,通过a d 转换接口实现对压力传感器的温度和压力信号的采集,利用b p 网络算法实现了对采集信号的数据拟合,利用l e d 显示,利用r s 4 8 5 串口通讯实现数据交换及压力值输出,完成功能要求。详细叙述了压力传感器的温度补偿方法,重点讨论了人工神经网络中的b p 网络算法。b p 网络算法主要包括b p 网络的结构,基于m a t l a b 神经网络工具箱的b p 网络仿真。根据b p 网络的数据连接关系实现了b p 网络的c 语言表示,根据b p 网络的权值、阈值由数组连接实现了向m s p 4 3 0 单片机的程序移植,完成信号的控制。提出了基于遗传模拟退火b p 网络算法的压力传感器温度补偿系统。设计了压力传感器的硬件电路。利用m p m 2 8 0 压力传感器测量压力,通过放大器实现温度和压力信号的放大,利用m s p 4 3 0 自带a d 转换的1 2 位m s p 4 3 0 单片机实现信号处理,通过r s 4 8 5 实现输出,设计了显示功能,设计了丰富的电源电路,并且通过相应的电压转换芯片实现对各个模块的不同电压供电。实现了压力传感器的软件设计,在m s p 4 3 0 编译软件i a r 上利用c 语言实现了初始化子程序,温度和压力a d 采样程序,b p 网络信号处理子程序,显示子程序和r s 4 8 5 通讯子程序。设计了基于m a t l a bg u i 的串行通讯压力传感器标定软件,在g u i 上实现了对单片机的信号采集,b p 网络训练以及对单片机的串行通信实现的在线标定的功能。研究设计的智能压力传感器具有体积小、精度高,并实现了基于m a t l a b的b p 网络在线标定。通过仿真对软、硬件进行了充分的调试,效果良好,在工业现场已经应用实现,在众多压力测控系统中有着广阔的应用前景。关键词:压力传感器,m s p 4 3 0 单片机,温度补偿,b p 网络算法1 一r es e a r c ha n dd e v e l o p m e n to fs 剐眙l r tp r e s s u r es e n s o ra b s t r a c tan e wt y p eo fs m a r tp r e s s u r es e n s o ri sd e s i g n e df o rt h ep r o b l e mo fp r e s s u r es e n s o r so u t p u tl o wp r e c i s i o na n de n r i c hp r e s s u r es e n s o r ss i n g l ef u n c t i o n t h ep r e s s u r es e n s o rt a k e st h em s p 4 30m c ua sc o n t r o lc o r e ,a n dt e m p e r a t u r ea n dp r e s s u r es i g n a lg a t h e r i n gi sr e a l i z e dt h r o u g ha dc o n v e r t e ri n t e r f a c ea n dt h ed a t af i t t i n go ft h ec o l l e c t e ds i g n a l si sr e a l i z e db yb pn e t w o r ka l g o r i t h m ,a n dt h ef u n c t i o n a lr e q u i r e m e n t sa lec o m p l e t e dw i t ht h eu s eo fl e dd i s p l a y , w i t ht h eu s eo fr s 4 8 5s e r i a lc o m m u n i c a t i o nf o rd a t ae x c h a n g ea n dt h ep r e s s u r ev a l u eo u t p u t t h i sp a p e rd e s c r i b e sap r e s s u r es e n s o rt e m p e r a t u r ec o m p e n s a t i o nm e t h o d ,f o c u s e do nt h ea r t i f i c i a ln e u r a ln e t w o r kb pn e t w o r ka l g o r i t h m b pn e t w o r ka l g o r i t h mi n c l u d e sb pn e t w o r ks t r u c t u r e ,b a s e do nm a t l a bn e u r a ln e t w o r kt o o l b o xo ft h eb pn e t w o r ke m u l a t i o n t h eb pn e t w o r ki se x p r e s s e db ycl a n g u a g ea c c o r d i n gt ob pn e t w o r kd a t ac o n n e c t i o nr e l a t i o n s ,a sw e l la st h eb pn e t w o r kt ot h em s p 4 30m i c r o c o n t r o l l e rp r o g r a mt r a n s p l a n t a t i o na c c o r d i n gt ob pn e t w o r kw e i g h t s ,t h et h r e s h o l da c h i e v e db yt h ea r r a yo fc o n n e c t i o n s a n dt h eg e n e t i cs i m u l a t e da n n e a l i n ga l g o r i t h mf o rb pn e t w o r kp r e s s u r es e n s o r st e m p e r a t u r ec o m p e n s a t i o ns y s t e mi sp r o p o s e d t h ec i r c u i to ft h i sp r e s s u r es e n s o ri sd e s i g n e d ,u s i n gm p m 2 8 0p r e s s u r es e n s o r st om e a s u r ep r e s s u r e ,u s i n ga m p l i f i e rt od e a l sw i t ht e m p e r a t u r ea n dp r e s s u r e ,u s i n ga dc o n v e r s i o no f12 一b i tm s p 4 30m i c r o c o n t r o l l e rf o rs i g n a lp r o c e s s i n g ,a c h i e v e do u t p u tt h r o u g ht h er s 4 8 5 ,d i s p l a yi sd e s i g n e d ,t h ed e s i g no fp o w e rs u p p l yc i r c u i ti se n o u g h ,a n dt h r o u g ht h ec o r r e s p o n d i n gv o l t a g ec o n v e r s i o nc h i pf o re a c hm o d u l eo ft h ed i f f e r e n tv o l t a g es u p p l y t oa c h i e v eap r e s s u r es e n s o r - b a s e d s o f t w a r ed e s i g n ,s o f t w a r e ,i a r sm s p 4 30c o m p i l e rt ou s ecl a n g u a g et oa c h i e v et h ei n i t i a l i z a t i o ns u b r o u t i n e ,t e m p e r a t u r ea n dp r e s s u r eo fa ds a m p l i n gp r o c e d u r e s ,b pn e t w o r ks i g n a lp r o c e s s i n gr o u t i n e s ,d i s p l a yr o u t i n e s ,a n dr s 4 8 5c o m m u n i c a t i o n ss u b r o u t i n e s ,d e s i g n e db a s e do nm a t l a bg u if o rs e r i a lc o m m u n i c a t i o np r e s s u r es e n s o rc a l i b r a t i o ns o f t w a r e ,i nt h eg u it oa c h i e v es i g n a la c q u i s i t i o no fm c u ,b pi i in e t w o r kt r a i n i n ga n dt h em i c r o c o n t r o l l e rs e r i a lc o m m u n i c a t i o nt oa c h i e v eo n - l i n ec a l i b r a t i o nf u n c t i o n t h er e s e a r c hd e s i g no fs m a r tp r e s s u r es e n s o rs y s t e mh a st h ec h a r a c t e r i s t i c so fs m a l ls i z e ,l o wc o s t ,r e l i a b i l i t y ,f a s tr e s p o n s ea n dh i g hd e g r e eo fi n t e l l i g e n c e ,a n dt h eo n l i n ec a l i b r a t i o no fb pn e t w o r ki n 僵a :na bi sr e a l i z e d af u l ld e b u g g i n gf o rt h eh a r d w a r ea n ds o f t w a r ei sa c h i e v e dt h r o u g hs i m u l a t i o n ,a n dh a sag o o de f f e c t t h ea p p l i c a t i o ni nt h ei n d u s t r i a lf i e l dh a sb e e na c h i e v e d ,a n di nm a n yp r e s s u r em e a s u r e m e n ta n dc o n t r o ls y s t e mh a sb r o a da p p l i c a t i o np r o s p e c t s k e yw o r d s :p r e s s u r es e n s o r ,m s p 4 30m i c r o c o n t r o l l e r , t e m p e r a t u r ec o m p e n s m i o n ,b pn e t w o r ka l g o r i t h ma j j i s i 】5 乙i ( :t i i i1 绪论】【1 1 传感器相关介绍11 2 智能压力传感器介绍11 2 1 压力传感器11 2 2 智能压力传感器的定义21 2 3 智能压力传感器的功能一31 2 4 智能压力传感器的特点31 3 智能型压力传感器研究现状与发展趋势一31 3 1 我国压力传感器研究现状31 3 2 国外智能压力传感器研究现状41 3 3 智能压力传感器发展趋势41 4 课题研究的内容与意义51 4 1 课题研究的内容51 4 2 研究背景及课题研究的意义61 5 本论文的主要工作62 压力传感器温度补偿方法72 1 压阻式压力传感器的温度漂移72 2 压阻式压力传感器的温度补偿方法一72 2 1 硬件电路补偿方法。72 2 2 线性插值法一82 2 3 曲线拟合法92 2 4 曲面拟合法1 02 2 5 人工神经网络算法1 02 3b p 网络算法在压力传感器温度补偿中的应用1 02 3 1 压力传感器模型l o2 3 2b p 网络介绍1 12 3 3m a t l a b 神经网络工具箱介绍1 22 4 试验样本的采集及相应处理1 82 4 1 试验样本采集及相应处理18l2 4 2 基于m a t l a b 神经网络工具箱的b p 网络仿真2 02 4 3 神经网络函数式推导。2 22 4 4 神经网络c 语言转化程序2 42 5 基于遗传模拟退火b p 网络算法的压力传感器温度补偿系统2 52 5 1 遗传算法( g e n e t i ca l g o r i t h m ,g a ) 2 62 5 2 模拟退火算法( s i m u l a t e da n n e a l i n g ,s a ) 2 62 5 3 遗传模拟退火b p 网络算法( s a b p ) 一2 72 5 4 遗传模拟退火算法的m a t l a b 程序2 92 6 本章小结3 33 硬件电路设计3 43 1 智能压力传感器的硬件框图3 43 2m s p 4 3 0 单片机3 43 2 1m s p 4 3 0 单片机的选取3 43 2 2m s p 4 3 0 单片机的特点3 43 2 3m s p 4 3 0 单片机与8 9 c 5 1 单片机的比较3 53 2 4m s p 4 3 0 单片机在本课题中的应用3 63 3 压力传感器3 63 3 1 扩散硅压力传感器测量压力原理3 63 3 2 扩散硅压力传感器的选取3 83 4 供电模块的实现3 93 5 信号放大电路的实现4 13 6 温度压力信号a d 转换实现4 13 7 串行通讯的实现4 23 7 1r s 4 8 5 介绍4 23 7 2r s 4 8 5 硬件电路实现4 33 8 输出压力显示的实现4 43 9j t a g 技术4 43 1 0 本章小结4 54 智能压力传感器的软件设计4 64 1 软件设计整体框架4 64 2m s p 4 3 0 单片机程序设计4 84 2 1 上电初始化子程序4 84 2 2 温度压力信号采集子程序4 95 工作总结与展望6 05 1 工作总结6 05 2 本文创新点6 05 - 3 前景展望6 0致谢6 1参考文献6 2附录a :硬件电路原理图6 5附录b :上位机界面程序6 6攻读学位期间发表的学术论文9 0原创性声明及关于学位论文使用授权的声明9 li i i智能压力传感器的研究与开发l 绪论1 1 传感器相关介绍信息革命的两大重要支柱是信息的采集与处理,信息采集的关键是传感器,传感器技术n 2 1 已经成为现代信息技术的重要支柱之一,在当代科学技术领域有着重要的地位。传感器的性能在很大程度上决定着整个信息技术的性能,其生产能力与应用水平直接影响到技术的发展与应用。传感器种类繁多,其是和人类的感觉器官相对应的元件。国家标准的定义是:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件与装置,通常是由敏感元件和转换期间组成。智能传感器,据h o n e y w e l l 工业测量与控制部产品经理t o mg r i f f i t h s 的定义:“一个良好的智能传感器是由微处理器驱动的传感器与仪表套装,并且具有通信与板载诊断等功能,为监控系统和或操作员提供相关信息,以提高工作效率及减少维护成本。”智能传感器的特征是带有微处理器,本身具有采集、处理以及交换信息的能力,是传感器集成化与微处理机相结合的产物。与一般传感器相比,智能传感器具有三个优点:通过软件技术可实现高精度的信息采集,而且成本低;具有一定的编程自动化能力;功能多样化。总体而言,智能传感器口4 1 的有以下功能:( 1 ) 具有双向通讯、标准化数字输出或者具有符号输出功能;( 2 ) 能够自动采集数据并能够对数据进行预处理;( 3 ) 具有自动补偿功能;( 4 ) 具有判断、决策处理的功能( 5 ) 具有数据存储、记忆与信息处理功能;( 6 ) 能够自动进行检验、自选量程、自寻故障;( 7 ) 具有自校零矫正、自标定、自校正功能;( 8 ) 具有一定的高精度;1 2 智能压力传感器介绍1 2 1 压力传感器压力传感器是测量压力、压强的仪器,一般意义上讲压力传感器主要由测量元件传感器,测量电路和过程连接件组成,他能过将气体,液体等压力信号转化成标准的电信号,以供控制领域使用,或者进行二次测量。本文选择的传感器是压阻式压力传感器,压阻式压力传感器是应用最广泛的压力传感器之一。压阻式压力传感器是利用硅的压阻效应和微电子技术制成的,易于微型化和集成化等特点,因此获得广泛应用,而且是发展迅速的一种新的物性型传感器,它具有图1 - 2 智能压力传感器实物图f i gl - 2t h ep i c t u r eo f s m a r tp r e s s u r es e n s o r展使通有微处理器是、自身功能的义说智处理器部分,通常是以螺旋方式嵌入到液体或气体中,前端是信号线主要是给压力传感器供电以及实现感受压力输出的。2智能压力传感器的研究与开发1 2 3 智能压力传感器的功能微处理器能够在智能压力传感器系统中按照给定的程序对传感器实现软件控制,利用软件控制算法实现数据拟合,进而实现精度的提高,把传感器从单一功能变为多功能。智能压力传感器一般都具有基本功能:人机对话功能:可以将计算机、智能压力传感器、仪表等器件组合在一起,配合操作人员指导工作,减少操作失误和读数失误,及时进行修改,可配备各种显示装置和输入键盘,使系统具有灵活的人机对话功能进行人机对话。数据处理功能:智能压力传感器能对各个被测参数进行测量,并能够根据已知被测参数利用计算方法实现输出数据拟合结果,并能够根据自身的特征分析判断并自动调零、自动平衡、自动补偿等。接口功能:可以通过一系列的标准通讯协议将传感器的输出值传送到远方,标准的协议主要有r s 4 8 5 通讯协议,c a n 总线,m o d u s 总线等,另外智能化传感器可以将数据通过d a 转换实现模拟量电压电流形式的输出,以满足客户要求。软件组态功能:可以在上位机上编写g u i 来更好的配合下位机的要求,如获取下位机工作环境的信息,并实现与下位机的信息交互等。信息存储和记忆功能:为了防止数据丢失影响生产,智能压力传感器具有信息存储、记忆功能,能把测量参数、状态参数等通过r a m 和e e p r o m 进行存储。可以设置掉电保护以防止数据的丢失。1 2 4 智能压力传感器的特点根据智能型压力传感器功能畸3 ,可以简单归纳为以下几点:( 1 ) 高性能价格比的特点。( 2 ) 灵活性强的特点。( 3 ) 强自适应性的特点。( 4 ) 精确度高的特点。( 5 ) 设计制造容易,使用维修简单的特点。( 6 ) 高可靠性和高稳定性的特点。( 7 ) 集中控制的功能。( 8 ) 灵活性强的特点。1 3 智能型压力传感器研究现状与发展趋势1 3 1 我国压力传感器研究现状我国传感器产业 8 1 起步晚,但是发展速度很块,特别是改革开放之后。早在八十年代之前,我国的传感器的研究单位主要是集中在科研单位和大学高校,如中国科技大学,北京航空航天大学,浙江大学等研究机构。如1 9 9 6 年,河北工业大学研制了w p s 一1陕西科技大学硕士学位论文型智能压力传感器,1 9 9 6 年,河北工业大学研制了w p s - 1 型智能压力传感器,信息产业部第4 9 研究所也对智能压力传感器进行了研制,并取得了一定的成果。进入到9 0 年代以及2 1 世纪前十年,我国的传感器厂家发展到成百上千家,都有一定的智能型压力传感器的出现。如西安中星测控有限公司推出的p t 6 0 0 系列智能型压力传感器,成都先达电子有限公司生产的p s l 0 1 6 系列智能压力传感器,上海托克智能仪表有限公司生产的d h 4 智能数显电流电压表,苏州敏芯推出m e m s 压力传感器芯片,它们的特征是有相对较高的精度,宽温度范围下使用,宽量程等。目前的压力传感器的品种繁多,应用领域范围大大拓宽,已有微压、表压、高压、绝对压力、差压等力敏元件及其配套仪表在销售,已经基本满足生产生活要求。1 3 2 国外智能压力传感器研究现状,由于历史条件,国外的压力传感器技术起步早,发展早,技术相对先进,但是这种优势相对国内已经没有以前那么明显,但是力敏感元件上的压力传感器的研制核心技术国外仍然有优势。国外压力传感器的发展主要有两条途径,其一是以美国为代表的优先发展军工在由军工过度到民用的阶段,这种途径能在较长时间内在压力传感器行业保持技术优势,但是由于要保持科学技术的领先地位要投入大量的人力物力,经济回收效率很慢。其二是以日本为代表的先生产普及在进一步技术提高的途径,首先引进再生产研制,这样能够形成规模,迅速占领市场,具有很好的效益优势。h o n e y w e l l 于2 0 0 9 年推出了o 到1 0 英寸水柱表压、士1 0 英寸水柱差压、士5 英寸水柱差压的各种压力传感器。该传感器为超低功耗传感器,采用集成电路进行内置放大与信号调理,可以更快地读取更精确的压力读数。伊玛电子推出了p a 系列压力传感器,其具有高精度,可扩展的压力范围,可编程的智能型压力传感器,并设置有电源保护的功能。据了解,在1 9 9 4 年世界传感器市场总的交易额达到2 6 0 亿美元,并且在2 0 0 0 年以的前,世界传感器市场规模年增幅为7 以上,其中高档传感器增幅可达2 0 以上,而那些采用微机械加工技术( m e m s ) 和微系统技术等高新技术制造的各类型新型智能传感器,其年增长率可达2 5 以上,到2 0 0 6 年交易额突破5 0 0 亿美元。1 3 3 智能压力传感器发展趋势随着科学技术的发展,为了和控制技术向结合,智能型压力传感器向小型化,集成化,智能化,标准化,系列化方向发展,并且向无线传感器方向发展,传感器之间的通讯也有可能实现。总之,智能压力传感器是随着客户需求而发展的。纵观几十年的压力传感器的发展情况,智能压力传感器的发展趋势叫2 1 主要是有两个方面。其一是寻找新原理,新工艺,新材料来提高压力传感器的本身感应压力信号的4智能压力传感器的研究与开发能力。其二是提高压力传感器的技术性能。为了提高压力传感器的技术性能参数,可以通过以下几个方面:1 ) 差动技术:利用差动技术可以消除共模误差,减小非线性误差。2 ) 平均技术:其原理是利用若传感器同时感受被测量,输出其平均值。3 ) 补偿与修正技术:针对传感器工作条件或外界环境进行误差补偿,也是提高传感器精度的有力技术措施。4 ) 屏蔽、隔离与干扰抑n - 压力传感器的工作场合有可能很复杂,会受到电磁波的干扰,可以设置抗干扰技术减少对传感器的影响。5 ) 稳定性处理:随着时间的推移和环境条件的变化,构成传感器的各种材料与元器件性能将发生变化。为了提高传感器性能的稳定性,可以对材料、元器件或传感器等整体进行电压稳定性处理。开发新型传感器让你仍然是未来发展的一个方向,开发新型的压力传感器主要是基于利用新原理来填补传感器的空白,新原理的开发有很大一方面是来自于大自然的灵感。开发新型压力传感器的另外一个方面是新材料的研发,纵观新材料的发展趋势,主要是有:a ) 从单晶体到多晶体、非晶体;b ) 从单一型材料到复合材料:c ) 原子( 分子)型材料的人工合成。利用复杂材料来制造性能更加良好的压力传感器是今后的发展方向之一。另外研究智能材料,采用新工艺仍然是研究的一个方向。嚣一j 一1 4 课题研究的内容与意义1 4 1 课题研究的内容在一定的温度和压力下,要改善传感器的非线性变化引起的输出误差特性,这里是将温度作为非目标参量采用人工神经网络算法中的b p 网络算法对其实现软件补偿的,即看作标定压力是温度和所加压力的二维函数,这种二维函数用b p 神经网络进行映射。该b p 网络分为输入层,表示温度和压力的输入,第一隐含层,为5 个神经元,第二隐含层为4 个神经元,输出层,为1 个神经元。根据b p 网络的自组织自学习能力,完成对训练样本下的b p 网络训练,实现压力传感器的非线性映射。分析了智能型压力变送器的硬件电路设计,以及软件实现方式,针对b p 网络的应用复杂的问题,设计了基于m a t l a b 的g u i 标定界面,通过一定的通讯协议,在该界面上完成对下位机工作环境温度和压力信号的采集,通过自动组建b p 网络在g u i 界面上实现在线训练,利用通讯协议完成在线标定的功能,实现了批量生产的目的。在m a t l a b 环境下实现了b p 网络算法,分析了对于b p 网路易陷入局部极小问题,分析了用于优化的遗传模拟退火b p 网络算法,该算法对加速b p 网络的训练起到优化作用,并对陷入局部极小实现了改进。6智能压力传感器的研究与开发2 压力传感器温度补偿方法2 1 压阻式压力传感器的温度漂移压阻式传感器n 3 叫胡是根据半导体的电阻率随应变力变化的性质制成的半导体器件,当电阻受到力作用的时候,电阻的电阻率发生变化,这种情况称为压电效应,对于这种情况半导体材料更为明显,特别是硅型压力传感器。硅压阻式压力传感器的核心部分是一硅膜片,集成在硅片上的四个等值电阻连成平衡的电桥,当被测压力作用在硅片上时,电阻的阻值由于电阻率变化就发生变化,电桥失去平衡,产生了电压电压差,就相应有电压输出。外界压力通过外壳的接口,加到传感硅片上,引起传感硅片上惠斯通电桥的四个电阻阻值发生变化,阻值的变化就转化为电压信号输出。扩散硅压力传感器具有滞后和蠕变小、灵敏度高、量程适应度广等优点,应用潜力很大。但是由于压力传感器的前端压敏材料是由半导体材料制成的,半导体材料的主要特征之一就是受到温度的影响较大,如硅材料和温度t 就有一个指数型的关系,从因果关系上来讲,扩散硅压力传感器的输出电阻值存在温度漂移,表现为一定的指数型关系。温度漂移问题的表现即输出电压值不是完全的和输入压力值呈现线性关系,并且和温度呈现函数关系,即在加上相同的压力的条件下,温度发生变化电压输出值也会发生变化。通过检测,这种变化不是完全的自由式变化,而是有一定规律的,如呈现递减型,递增型或者抛物线型变化。2 2 压阻式压力传感器的温度补偿方法。压阻式压力传感器的温度补偿方法有硬件电路补偿和软件补偿方法,在硬件电路补偿中,压力传感器制作是利用在硅片上制造出四个阻值相等的薄膜电阻,并组成惠斯登电桥,其原理是当惠斯登电桥不受外力作用时,电桥处于平衡状态,无输出电压值为零;当受到压力的作用时j 四个压敏电阻会发生阻值变化,电桥就会失去平衡,电桥输出相应的电压,通过材料的选定,电桥输出的电压与压力是做到成比例的。由于温度的影响,四个电阻的阻值变化表现为所受压力和温度的二元函数,将使传感器的温度漂移。传感器的温度漂移可采用在电桥电路中串联,并联补偿电阻的方法来解决。对于软件补偿方法主要是随着计算机技术的发展,将待补偿数据通过a d 转换通道输入到微处理器中,利用一定算法实现温度补偿的,其根本方法有插值法,曲线拟合法,曲面拟合法,人工神经网络算法等。2 2 1 硬件电路补偿方法硬件电路的补偿方法主要是在惠斯登电桥上改善压力传感器的特性,其中的一个常用的例子就是在桥臂上并联或者串联电阻的方式来实现温度补偿。例如,如果传感元件是一个正向温度系数的压敏电阻,我们可以串联上一个负向温度系数的热敏电阻以抵消7陕西科技大学硕士学位论文正温度系数的压敏电阻的阻值变化。当温度改变时,当传感元件的阻值增大时,热敏电阻的阻值减小,所以实现电桥的总体总之平衡。但是这样涉及到新材料新工艺,对于热敏电阻和压敏元器件之间的匹配问题增加了这种补偿的难度,同时这种补偿方法不利于减少压力传感器的体积。硬件电路补偿方法n 刚另外一种可以用模数转换器的输入电压和参考电压之间的关系来实现对传感器进行温度补偿。如图2 - 1 所示,r t 为感应元件,但为热敏性质的电阻,r m 为锰铜电阻,随温度变化阻值变化不大。当加上不同的压力是,惠斯登电桥实现不同形式的压力输出,压力信号可以通过差压后输入到a d 转换芯片a d c 0 8 0 9 的9 端以便经过转换之后变为数字量,但是由于温度变化引起的电压变化也引起了放大器差压信号的变化,放大器将差压信号经过放大后输入到a d c 0 8 0 9 的v r e f 端,v r e f 为a d 转换的参考电压,因此可以说,当发生温度漂移时同时引起了参考电压的变化,这种变化抵消了温度偏移引起的影响,实现稳定的数字量输出。图2 1 硬件电路温度补偿图f i 醇1t h ec i r c u i to fh a r d w a r ec i r c u i tt e m p e r a t u r ec o m p e n s a t i o n2 2 2 线性插值补偿方法线性插值法n 7 一阳是一个在数学,计算机图形学领域中广泛应用的差值方法应用。在平面直角坐标系中假设我们已知坐标a ( x o , y o ) 与b ( x b y o ,要得到 x o , x d 区间内某一位置x在直线a b 上的值,可以根据式2 一l 计算:盟:三玉( 2 1 )y 1 一y ox l x o首先根据公式2 2 计算a b 的斜率k :必( 2 2 )而一8智能压力传感器的研究与开发则y = + 七( 咒一y o ) 计算出插值点y 的值。在压力传感器数据拟合即是在多个标定点下的线性差值,它是首先将数据存储到r a m 中,在应用中首先将数据与所采集参数进行比对,判断其落入到何区域,然后根据其所在的区域找出其温度点下的直线方程,按照线性函数对应找出标定结果。就是将被测量数据按照量程分为若干段,然后将相邻两分段点用直线连起来,再用直线来描述数据曲线。插值法优点在于根据采集的数据比对处理速度快,算法简单,缺点为如果选择的插值数据多则需要占用很大的存储空间,若插值基点少则精度不够。2 2 3 曲线拟合补偿方法曲线拟合法n 鲫的数据拟合步骤如下所示。( 1 ) 对标定压力p 的数据拟合方程利用所采集到的实验数据将不同工作温度条件下所对应的输入u 与输出p 可以用一维多项式方程表示如式2 3 所示。温度t l :e l = k l o + 毛l u + 墨2 u 2 + 毛3 u 3 + 毛4 u 4 + 墨5 u 5 斗温度t 2 :最= k 2 0 + 如l u + 屯2 u 2 + 如3 u 3 + 乞4 u 4 + 如5 u 5 + ( 2 - 3 )j;温度t i :只= k ,o + 毛1 u + 砖2 u 2 + t 3 u 3 + 毛4 u 4 + 毛5 u 5 + 根据所测量得到的数据,利用个温度点下所输出值u ,计算其1 次方,二次方到5次方,标定压力为尸,此方程输出根就可以确定。故首先由输出压力p 和输出压力u 找出其多项式系数k ( 2 ) 对系数k 的曲线拟合方程对于上式中各个系数k 随温度变化的规律通常不是线性的,这里也用一位多项式进行数据拟合,式方程表示为如式2 - 4 :常数项系数k o = 4 + o o u + c o 以2 + d o u 3 + e o u 4一次项系数k l = 4 + 蜀配+ c l u 2 + d l 3 + 置配4( 2 4 )!;五次项系数恕= 4 + b 5 u ,+ g u t 2 + 色u t 3 + e u ,4在标定试验中,可以根据不同温度点的t 和标定系数k 用实验标定数据,可以求解出上式中各个系数:a 0 ,a 5 :b 0 ,b 5 :c o ,c 5 :d o ,d 5 :e 0 ,e 5 。从而方程组( 2 4 )就被确定。( 3 ) 确立工作温度t 时的u - p 特性的曲线拟合方程通过不同温度点标出各项系数颤,这样就确定了压力传感器的标定多项式如式2 5 :只= k o + 七l u + k 2 u 2 + 屯u 3 + k u 4 + k s u 5 + ( 2 5 )9陕西科技大学硕士学位论文根据上式可以根据输出的压力传感器的电压值找到输出的标定值p t ,设计的方法简单,比较容易实现,并且精度很高。2 2 4 曲面拟合补偿方法曲面拟合方法相对于最小二乘法在二维空间上的一个扩展。对于压力传感器的输入电压u 和标定压力p ,如果简单的看成一维形式的线性曲线来直接进行数据拟合,就会有很大的误差,实质上压力输出值不是压力信号的一元函数,而是二元函数,即式2 6 :u=厂(p,u)(2-6)在数据拟合的过程,可以看作输出压力关于u 与u ,基本公式如式2 7 :p = 厂( u ,u )( 2 7 )这样,我们就可以把标定电压值视为输出电压值和相应温度值的二维函数。可以用二维回归方程来拟合这个函数关系:p ( 【,) :壹妻u h r q ,具体表述如式2 8 :i = lj = lp = 口i l + 呸l u + 口1 2 u + q l u 2 + 呸2 q + q 3 u 2 + - 一( 2 8 )对于曲面拟合,如若拟合的次数太低,则会出现误差下降,拟合精度较差,不能够满足精度要求,如果拟合的次数较大,则精度会相对提高,但同时则会出现计算量大的情况,但是根据数据分析已经有一些函数可以实现这种数据拟合。2 2 5 人工神经网络补偿方法随着人工智能的发展,人工神经网络技术呦 2 3 1 作为一门新兴的学科得到了长足发展。人工神经网络是由大量具有非线形映射能力的神经元广泛连接而成的非线形动力学系统,能完成复杂的非线性映射功能,同时神经网络具有自组织、自学习及推理的自适应能力。其应用的基本思想是通过训练样本的输入与输出对神经网络训练来实现的,利用神经网络的自身修正实现输入数据到输出数据的映射,b p 网络自身修正是基于最小二乘法实现。人工神经网络的运用主要是b p ( b a c k p o r p g a a t i n o ) 网络和径向基函数r b f ( r a d i a lb a s i sf u n c t i o n ) 神经网络,其中8 0 以上主要是b p 网络算法对压力传感器进行温度补偿的。这种方法准确度高,具有较高的收敛性,其突出的优点是可以通过训练数据的增减来改善b p 网络的映射特性,由于b p 网络的数据拟合是一种动态的,并且是通过输入的训练样本和目标样本是b p 网络向最小的误差方向逼近,又b p 网络具有泛化能力,所以补偿精度也较高。在本设计中的主要应用是b p 网络算法,所以对此进行详细介绍。2 3b p 网络算法在压力传感器温度补偿中的应用2 3 1 压力传感器模型压力传感器模型图如图2 - 2 所示,气压或液压作用在前端压力传感器上,压力传感器将压力和温度的电压信号输入到放大器,通过放大器信号放大输入到m s p 4 3 0 单片机1 0智能压力传感器的研究与开发的a d 转换通道,m s p 4 3 0 单片机将压力和温度的电压信号转换成数字量进行处理后通过l e d 显示出来,并通过r s 4 8 5 通讯接口将数据传送给上位机,实现数据的输出。由于压力传感器的温度漂移使u = k * p 不能够实现线性输出,存在线性误差与温度误差,这里选择b p 网络数据拟合算法进行温度补偿,则上式反函数为p :厂( 玑r ) 。通过标定压力实现不同温度点下压力和温度信号获取完成b p 网络训练样本采集,利用b p 网络可以通过训练数据完成权值与阈值的修正,使其输出值无限接近于真实输出值,利用b p 网络的泛化能力实现整个量程内近似线性输出。压力信号爿信号调理 = 今b p 网络数据处理数据输出温度信号- - 一- , , 止_ f i g 2 2t e m p e r a t u r ec o m p e n s a t i o ns y s t e mm o d e ld i a g r a m2 3 2b p 网络介绍b p 神经网络模型心4 捌是目前应用最广泛的神经网络模型,它分为输入层、隐含层和输出层三层,一把来说输入层输出层使用一层,而隐含层可以扩展,层与层之间多是采用全互连方式的,同一层单元之间不存在相互的连接。b p 神经网络模型用数据的训练是由信息的正向传播和误差的反向传播动态组成的,在正向传播的输入模式是从输入层经隐含层逐层处理并传向输出层,如果输出层和期望目标值进行比较没有得到期望的误,差,则将误差信号沿原来的通路返回并修改各层的权值转为反相传播,然后在逐次运算,直到误差最小,最终达到期望的目标值。这里b p 神经网络的训练采用在神经网络工具箱中变步长和带动量因子的算法,即l m 算法,既可以加快网络训练速度,又可以防止网络限于局部极小点。b p 神经网络结构如下图2 3 :输 层黪舍层输出层厂_ 、。_ _ 、-_ 、图2 3b p 神经网络结构图f i 9 2 - 3b pn e u r a ln e t w o r ks t r u c t u r ed i a g r a m在图2 3 所示中,p 为输入向量,r 为输入维数,s 1 为输入各个神经元个数,w 1 神经元层数,1 3 1 为输入节点,a 为节点输出,w ;,为各个神经元连接权值,f 为激励函数,b 1 为神经元阈值。根据b p 神经网络的特征,b p 网络的计算关系式如下:每个节点的输出如式2 9 :陕西科技大学硕士学位论文= 厂( w , jx a + )( 2 9 )对于每个输入模式p 网络误差如式2 1 0 :q = i 1 ( 厶- a r ,) 2( 2 1 0 )f上式中口为节点上的实际输出值,d 为节点上期望输出值。求误差之和如式2 1 1 :e=ye ,( 2 1 1 )_ 一p权值修正如式2 - 1 2 :w j , ( k + 1 ) = w j , ( k ) + r i o a ) d ( 后) + a d ( k - 1 )( 2 1 2 )式中d ( 七) :一罢为k 时刻的误差之和负梯度,d ( 后一1 ) 为k - 1 时刻的误差之和的负梯度,a 0 ,1 是动量因子,加入动量因子可以减少训练过程的振荡趋势,叩为学习率,可以改变训练时间。2 3 3m a t l a b 神经网络工具箱介绍m a t l a b 神经网络工具箱是面向人工神经网络的创建,仿真在内的g u i 界面,其直观操作方便,一般利用的是创建b p 网络,这里对于b p 网络的仿真进行介绍。1 ) 神经网络工具箱打开在m a t l a b 的主界面上输入n n t o o l ,按e n t e r 键或者在左下角s t a r t 上找t o o l b o x s找到n n t o o l 打开即进入神经网络仿真辛界面,主界而如图2 4 所示。图2 - 4 神经网络工具箱主界面f i 醇- 4n e u r a ln e t w o r kt o o l b o xm a i ni n t e r f a c e如上图所示,对主界面的具体介绍如下:1 2智能压力传感器的研究与开发i n p u t 表示输入的数据显示,t a r g e t 表示目标样本显示,i n p u td e l a ys t a t u s 表示输入延迟状态,这里一般不用,n e t w o r k 表示创建的网络显示,o u t p u t s 是仿真的输出值,e r r o r s 表示仿真输出的误差值。点击h e l p 可以查看帮助,n e wd a t a 用来创建新的数据,n e wn e t w o r k 可以创建一个新的网络,i m p o r t 表示导入保存过的数据或者网络,e x p o r t 表示导出或保存一个数据或者网络,点击v i e w 可以查看输入输出的数据,查看网络特征,仿真输出值等,d e l e t e可以用来删除数据或者一个创建好的网络n e t w o r k so n l y 里面i n i t i a t e 可以用来初始化创建好的网络权值,s i m u l a t e 可以用来仿真,t r a i n 用来训练网络,点击a d a p t 可以对神经网络进行自适应训练。2 ) 训练样本的创建数据的创建理论上有两种方式。第一种方式就是直接在工具箱中创建,如图2 5 为点击n e wd a t a 进入创建新数据界面,如图所示,在这里我们可以在n a m e 中改写数据的名称,在v a l u e 中改写数据的值,还可以选择数据的类型,一般都是选择i n p u t s ( 输入样本) ,t a r g e t ( 目标样本) ,输入好后点击c r e a t e 就可以创建完成。第二种方式就是从m a t l a b 的c o m m a n dw i n d o w 界面导入数据,输入一个数据s u s t d a t a 2 - - - - o 20 2 0 20 2 :然后我们在神经网络工具箱主界面进行导入,点击i m p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动市集活动方案
- 六一活动抓娃娃活动方案
- 六一活动赶庙会活动方案
- 六一活动饭团活动方案
- 六一游泳活动方案
- 六一猜灯谜活动方案
- 六一粘土活动策划方案
- 六一节党日活动方案
- 六一节活动方案
- 六一趣味拼图活动方案
- 2025设备租赁合同版本范文
- 2025年全国高考数学真题全国2卷
- 2025年浙江杭州钱塘区和达能源有限公司招聘笔试冲刺题(带答案解析)
- 转让钓场合同协议书
- 2025年四川省成都市初中学业水平考试生物试题(无答案)
- 医院感染教学课件
- 民航危险品运输典型案例55课件
- 仓库管理制度及流程
- 四川省绵阳市名校联盟2025届八年级物理第二学期期末复习检测试题含解析
- 叉车考试试题模拟100题及答案
- 《全球教育资源库》课件
评论
0/150
提交评论