(机械设计及理论专业论文)某八杆十副机构型与尺度综合的研究.pdf_第1页
(机械设计及理论专业论文)某八杆十副机构型与尺度综合的研究.pdf_第2页
(机械设计及理论专业论文)某八杆十副机构型与尺度综合的研究.pdf_第3页
(机械设计及理论专业论文)某八杆十副机构型与尺度综合的研究.pdf_第4页
(机械设计及理论专业论文)某八杆十副机构型与尺度综合的研究.pdf_第5页
已阅读5页,还剩57页未读 继续免费阅读

(机械设计及理论专业论文)某八杆十副机构型与尺度综合的研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大连理工大学硕士学位论文 摘要 本文针对与企业合作的某重型机械设备的机构研究项目,为获得该机构新型可行方 案,对机构进行了创新设计。在充分研究机构综合理论和对现有机构分析的基础上,运 用基于图论的机构再生运动链法进行机构方案创新设计,结合机构自适应运动综合理 论,建立新方案尺度综合的统一模型和求解方法,最后通过综合结果分析证明了可行性。 首先针对性能良好的一现有机构进行机构结构分析,并运用三维仿真软件对机构进 行运动学建模及分析,获得其滑动杆左侧端点的运动轨迹、速度以及加速度。 接着对该机构进行方案创新设计,将变胞机构综合问题转化为一般闭链机构综合问 题处理,运用机构再生运动链法对机构进行方案创新设计。由现有机构运动链一般化得 到一个8 杆1 0 副运动链;接着运用胚图插点法得到了1 6 种不同结构类型的8 杆1 0 副 运动链;通过运动链特定化得到满足约束条件的6 个再生运动链;将再生运动链具体化 为对应的机构,获得6 个新型方案解。 最后对方案解进行尺度综合,获得其结构参数。由现有机构滑动杆左侧端点的轨迹 提取出下扣阶段摆动杆的位置特征,将平面八杆机构的综合简化为二级杆组的综合,把 对滑动杆左侧端点的轨迹综合问题转化摆动杆的位置综合问题。在自适应运动综合理论 的基础上,运用优化方法在摆动杆的运动平面上搜索圆点以及其对应各个方案解下不同 运动平面上的圆心点,作为二级杆组的两个铰链点。考虑到二级杆组的极限位置以及避 免非扣钩段的干涉等要求,通过数学建模转化为约束条件,从而对各新型方案进行运动 综合的统一建模和求解。 本文给出了其中一方案的优化综合结果,用三维仿真软件对该方案进行了运动学建 模分析,通过分析结果对比证明了方法的有效性和结果的可行性。 关键词:八杆十副机构;再生运动链;方案设计;自适应运动综合 某八杆十副机构型与尺度综合的研究 r e s e a r c ho nt h ec o n c e p t u a ld e s i g na n dk i n e m a t i cs y n t h e s i so fa e i g h t b a ra n dt e n - - p a i rm e c h a n i s m a b s t r a c t t h i sd i s s e r t a t i o nf o c u s e do nt h ei n n o v a t i v ed e s i g no fan e wf e a s i b l ee x t e n s i b l e m e c h a n i s mi nah e a v ym a c h i n e r y a c c o r d i n gt ot h e a n a l y s i so fae x i s t e n te x t e n s i b l e m e c h a n i s ma n ds u f f i c i e n ts t u d yo ns y n t h e s i st h e o r ya n d m e t h o d ,t h er e g e n e r a t e dm o t i o nc h a i n m e t h o db a s e do ng r a p ht h e o r yw a sa d o p t e dt oc r e a t en e wm e c h a n i s m sf i r s t l y ,t h e nu n i f i e d m o d e lo fa d a p t i v es a d d l e - f i t t i n go p t i m i z a t i o ns y n t h e s i sm e t h o do ft h en e wm e c h a n i s m sw a s b u i l tt oo b t a i nt h ed i m e n s i o n s ,t h ef i n a la n a l y s i ss h o w e dt h ef e a s i b i l i t yo ft h i ss o l u t i o n p r o c e d u r e f i r s t l y ,t h eb a c k g r o u n da n dt h em o v e m e n tr e q u i r e m e n t so ft h er e s e a r c h e de x t e n s i b l e m e c h a n i s mw e r ep r e s e n t e d ,t h i se x c e l l e n te x i s t e n td e s i g nw a sa n a l y z e da n dt h ek i n e m a t i c a l m o d e lw a sc r e a t e db y3 ds i m u l a t i o ns o f t w a r es ot h a tt h el o c u s v e l o c i t ya n da c c e l e r a t i o nw a s o b t a i n e d s e c o n d l y ,f o rt h ep u r p o s eo fc o n c e p t u a li n n o v a t i v ed e s i g n ,t h es y n t h e s i so ft h i s m e t a m o r p h i cm e c h a n i s mw a sc o n v e r t e dt oap r o b l e mo ft h es y n t h e s i so fan o r m a lc l o s e d c h a i nm e c h a n i s m ,t h er e g e n e r a t e dk i n e m a t i cc h a i nm e t h o dw a su s e dt oc r e a t en e w m e c h a n i s m s a tf i r s t ,t h eo r i g i n a lm e c h a n i s mw a sg e n e r a l i z e dt oak i n e m a t i cc h a i nw i t h8 b a r sa n d10k i n e m a t i cp a i r s ,t h e ns i x t e e ni s o m e r o u sm o t i o nc h a i n sw e r ea t t a i n e db yn u m b e r s y n t h e s i sm e t h o d ,t h r o u g ht h es p e c i a l i z i n go ft h e s em o t i o nc h a i n s ,s i xr e g e n e r a t e dm o t i o n c h a i n sw e r ea b t a i n e d a tl a s t ,t h ek i n e m a t i cc h a i n sw e r es p e c i f i e dt om e c h a n i s m s ,s os i xn e w m e c h a n i s m sw e r es y n t h e s i z e d f i n a l l y ,t h r o u g ht h el o c u so ft h em a i na r m sh e a d ,t h ep o s i t i o nf e a t u r e so ft h ec o n t r o l l i n g s w i n ga r mw e r ee x t r a c t e d ,t h es y n t h e s i so fp l a n a re i g h t b a rm e c h a n i s mw a st r a n s l a t e dt oa s y n t h e s i so fs e c o n dg r a d ea s s u rg r o u p ,a n dp a t hs y n t h e s i so ft h em a i na r m sh e a dw a st u r n e d t ot h el o c a t i o ns y n t h e s i so ft h es w i n ga r m b a s e do nt h ea p p r o a c ho fa d a p t i v es a d d l e f i t t i n g , t h ec i r c l ep o i n to nt h em o v i n gp l a n eo ft h es w i n ga r ma n dt h ec e n t r ep o i n t so nd i f f e r e n t m o v i n gp l a n e sc o r r e s p o n d i n gt od i v e r s em e c h a n i s m sa r es e a r c h e df o rb yo p t i m i z a t i o nm e t h o d t a k i n gs o m er e q u i r e m e n t ss u c ha st h ea v o i d i n go fl i m i tp o s i t i o no ft h es e c o n dg r a d ea s s u r g r o u pa n dt h ei n t e r f e r eo ft h er o l l e ra n dt h em a i na r mi n t oc o n s i d e r a t i o n ,t h ec o n s t r a i n t i i 大连理工大学硕士学位论文 c o n d i t i o n sw e r ee s t a b l i s h e db ym a t h e m a t i c a lm o d e l i n g s ot h ek i n e m a t i cs y n t h e s i so f t h en e w m e c h a n i s m sw a sa c h i e v e d t h eo p t i m i z e dr e s u l to fan e wd e s i g n e dm e c h a n i s mw a sg i v e na n di t sm o t i o nm o d e lw a s e s t a b l i s h e db y3 ds i m u l a t i o ns o f t w a r e t h ee f f e c t i v e n e s sa n df e a s i b i l i t yo f t h i sa p p r o a c hw e r e p r o v e db yt h ec o n t r a s to f t h em o v i n gr e q u i r e m e n t s k e yw o r d s :e i g h t b a ra n dt e n p a i rm e c h a n i s m ;r e g e n e r a t e d k i n e m a t i cc h a i n ; c o n c e p t u a ld e s i g n ;a d a p t i v es a d d l e - f i t t i n gk i n e m a t i cs y n t h e s i s i i i 大连理工大学学位论文独创性声明 作者郑重声明:所呈交的学位论文,是本人在导师的指导下进行研究 工作所取得的成果。尽我所知,除文中已经注明引用内容和致谢的地方外, 本论文不包含其他个人或集体已经发表的研究成果,也不包含其他已申请 学位或其他用途使用过的成果。与我一同工作的同志对本研究所做的贡献 均已在论文中做了明确的说明并表示了谢意。 若有不实之处,本人愿意承担相关法律责任。 学位论文题目:墓! 缉士到趁衄f 躯丞盘金塑盔鱼 作者签名:上地l 一魄斗年生月丝日 大连理工大学硕士学位论文 大连理工大学学位论文版权使用授权书 本人完全了解学校有关学位论文知识产权的规定,在校攻读学位期间 论文工作的知识产权属于大连理工大学,允许论文被查阅和借阅。学校有 权保留论文并向国家有关部门或机构送交论文的复印件和电子版,可以将 本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、 缩印、或扫描等复制手段保存和汇编本学位论文。 学位论文题目: 作者签名: 导师签名: 大连理工大学硕士学位论文 1 绪论 1 1 课题来源及意义 本课题来源于国家高技术研究发展计划8 6 3 项目( n o 2 0 0 6 a a 0 4 2 1 0 1 ) “机械产品 智能化设计特征状态空间模型及其集成系统 ,以大连重工起重集团有限公司与大连 理工大学机械学院数字化研究所合作的某机械设备的机构研究项目为背景。 该设备是大连重工起重集团的重点产品,其主要技术都已拥有自主知识产权,且 产品在国内高端市场上拥有很高的占有率。但是该设备的一个关键机构的设计一直未取 得重要进展,目前使用的是国外某公司的专利技术。此部分机构在不考虑专利费的情况 下,生产成本在整套设备中所占比例几乎可以忽略,然而使用国外公司技术的结果直接 导致该公司整套产品的成本增加5 左右,且在参与国际竞标时受到种种限制,直接影 响到了整套设备的出口,极大的阻碍了海外市场的开拓。该机构是实现整套系统高效自 动化运转的关键设备,其性能关系到整条工作线的工作效率,性能高低对用户的经济效 益影响重大。因此,新型机构的研制,对企业降低产品生产成本,提高市场占有率,快 速打开海外市场具有重要意义。 1 2 文献综述 1 2 1 基于图论的机构运动方案型综合 机构的类型综合又称为方案设计或概念设计,对于其定义众多学者都给出了自己的 答案。f r e u d e n s t e i n 和d o b r j a n s k y j 1 j 提出了一个具有一般性的简单定义: “根据想要的 运动性能确定机构的结构形式 。而机构的结构或拓扑由连接件、运动副的数量及二者 之间的联结关系来确定。图论的方法首次被应用到运动链和机构中来。c r o s s l e y l 2 l 给出一 个更为具体的描述“分析想要获得的运动,目的是寻找最简单的机构类型或类型组合来 完成这种运动或近似完成 。按照这种定义,“类型 被认为是“组成成员的数量 。 他接着定义运动链数量综合为“一种给定连接件和运动副的排列研究 ,并且建议称其 为“排列综合更为恰当 。这就是图论在机构学中应用的开始。 从此,探讨用图论方法进行机构结构创新设计成为一个重要的方法。图论表达机构 基本方法是以图代表机构或者运动链,顶点代表构件,边代表运动副,边 将顶点联接就构成图。应用图的优点在于可以形象化表示顶点与边之间是否具有联结关 系,体现了在不考虑尺度的前提下,机构的一种拓扑关系。通常顶点与边之间的关联关 系可以用关联矩阵、邻接矩阵描述,其以曲柄滑动杆机构为例,其运动链的图及邻接矩 本文涉及企业技术保密。故隐去具体机构应用及参数。 某八杆十副机构型与尺度综合的研究 阵构建方式如下图1 1 。设图的顶点集v ( g ) = v l ,v 2 ,v p ) ,若v i 与v j 邻接,则a i j = l ; 若v i 与v j 不邻接或与,则确= o 。 强 图1 1曲柄滑动杆机构图与邻接矩阵表示 f i g 1 1g r a p hr e p r e s e n t a t i o no ft h es l i d e r - c r a n km e c h a n i s ma n dt h ei n c i d e n c em a r x 通过为每个边分配可能形式的运动副,并指定顶点中的某一个为机架,就可以产生 一种形式的机构。 d o b r j a n s k y 和f r e n d e n s t e i n i 】等人定义了多种邻接矩阵并归纳了它们之间的关系。由 这些邻接矩阵可以寻找到相应的结构。由于同一个运动链图的顶点标号顺序可以不同, 造成邻接矩阵不同,产生同构问题。采用邻接矩阵的特征多项式判别及其它方法可以解 决同构问题【4 1 。f r e u d e n s t e i n 和m a k i l 5 1 提出了功能和结构分离的想法,在给出一定数量、 类型的运动副及机构的自由度后,借助图论的方法可以穷举出所有可能的结构型式。为 了解决机构的拓扑构造与功能要求分离的困难,t h o m p s o n ,t r f 6 j 依据f r e u d e n s t e i n 和 m a k i 提出的机构功能要求和拓扑结构分离的原理,将二者的一般性信息分别建成规则 库,设计人员在输入所有的功能要求并添加到规则库后,拓扑结构发生器产生诸多拓扑 结构,然后通过评估模块评估出各个拓扑结构的优劣,并将较好满足功能要求的解输送 到草图绘制模块中加以显示,设计人员通过研究这些拓扑结构并参考规则库中的规则, 分析哪些信息并且是以怎样的序列被使用,可以获得方案设计的解并较好的理解方案设 计过程。据此他开发了t y s e s ( t y p es y n t h e s i se x p e r ts y s t e m ) 专家系统。然而,这只 是进一步应用人工智能技术对图论方法的补充和完善。致力于该领域研究的还有s o n i l 7 , s h a i ! 驯等。l a t i fa ih a k i m i 圳等人对图论表示方法进行了拓展。用图的项点表示构件,边 表示相邻构件间能量的流动。这种拓展容易看出组成元素间的能量流动,同时也易于将 其它约束条件如成本考虑在设计要素中去。f u n s i o n t l u j 的创新思路是产生所有可能的未 标注单方向路径,每个弧代表一个机构,每个节点代表输入输出连接,从数据库中选择 机构标注圆弧,进行排列组合产生方案d o m e s l l lj 的通过人机交互方式输入设计问题的规 定参数及结构属性,由此确定连杆数、运动副数和运动副类型及个数,产生满足构件数 与运动副数要求的所有非同构为标注图形,这些标注图就是潜在的设计方案。 1,j 1 0 l 0 o l o l l o l o o l o l p,。l 大连理t 大学硕士学位论文 台湾成功大学的颜洪森f 1 2 16 】提出了颜氏创造性机构设计法,又称再生运动链法。通 过将原始机构转换成只含连杆和回转副的一般化运动链,运用图论理论综合出与其相同 杆数和运动副数的所有非同构运动链,然后按该机构的工作要求所赋予的约束条件,得 出众多的特定化运动链并转换成相应的机构,获得机构图谱。该方法可高效地得到满足 现有专利技术要求,而不受专利保护的技术方案。19 9 8 年1 1 7 j 提出用树状图( t r e e g r a p h ) 表达加工中心拓扑结构。 国内褚金奎【2 0 j 提出了邻接链表和关联链表法。该方法与传统的邻接矩阵和关联矩阵 相比,更加直观、简单。尤其在机构的同构及拓扑对称性的判断中,优越性很显著。杨 廷力先生提出单开链迭加法【2 1 1 ,利用现有的机构结构,根据一定的规则,把结构单元依 次迭加到已构成的机构上去,形成更复杂的机构。 1 2 2 平面连杆机构运动综合的研究概况 平面连杆机构是由若干刚性构件用低副联接而成的平面机构,故又称为平面低副机 构。连杆机构运动综合向来是机构学研究最活跃的领域之一,不仅由于其应用的广泛性, 而且在于它是其它类型机构研究的基础。平面连杆机构运动综合理论与方法总体上可以 划分为精确点综合与近似综合两大类。 现行机构综合理论的精确点法己较成熟。精确点法,又可以分为两类,一类是基于 机构运动几何学的图解法,另一类是代数法。十九世纪初,e u l e r 等人就建立并完善了 平面机构运动几何学的经典理论,从而为机构运动综合奠定了理论基础。之后,b u r m e s t e r 为代表的德国几何学派和切贝雪夫( c h b e y s h v ) 等为代表的俄国代数学派将机构的尺度综 合推向新的发展阶段,形成了当今两个主要学派。德国机构学者l b u r m e s t e r 概括了 h a l t 的理论,提出了机构运动综合的图解法,w l i c h t e n h e l d t 、k h a i n 、g k i p e r 、 c a q e p k y b u h o 等均以此为基础建立并创造了适合于特定工程要求的设计方法。p l o s e 和w l o s e 发展的b u r m e s t e r 的理论,他们引入了位置族,得到了此族的极曲线,在此 基础上建立了一种新的连杆机构运动综合的图解法。由k h s i e k e r 等人开创的用解 析法研究b u r m e s t e r 运动几何学理论的工作,为后来计算机技术在机构综合上的应用创 造了前提条件。随着解算工具的发展,借助于图解数据处理,特别是运用迭代技术和图 形显示技术,能够快速直观地得到解域的概况【1 2 2 5 1 。s n k r a m e r 【2 6 ,2 7 1 及c h c h i a n g 2 8 】 等较早将计算机技术引入连杆机构综合,主要是应用n r 法求解机构综合中的非线性方 程组。f f r e u d e n s t e i n 【2 9 1 和c h s u h l 3 0 1 分别用回路约束法和杆副约束法( 也称位移矩 阵法) 建立了精确点综合的显式方程,并利用迭代法或优化法求解方程组以获得机构运 动参数。 某八杆十副机构型与尺度综合的研究 在实际应用中多为大范围多位置,甚至是多工况的问题,精确点法受到综合位置点 数目的限制,同时代数方法都需要解非线性方程组,因此很难在工程设计中推广。因此, 越来越多的研究方法倾向于机构近似综合问题。计算机的飞跃式发展更加快了这一进 程。基本方法有数值图谱法、函数逼近法和优化法。 国内在用数值图谱法进行平面连杆机构综合的理论研究开始得比较早,并在国际上 处于领先地位。霍荆平、曹维庆【3 l j 将连杆曲线的特征参数存入计算机建立“电子图谱 , 然后用模糊数学方法提取待综合轨迹曲线的特征参数,通过与数据库中的“电子图谱 比较可迅速找到能产生相应轨迹的机构。褚金奎【3 2 , 3 3 】、h o e l t z e d t 2 5 】【3 4 】等人将连杆曲线展 成富里叶级数形式,用频谱法提取曲线的特征参数以利于轨迹综合。黄灿明等1 3 5 1 用优化 法和图谱法相结合的方法求解平面四杆机构的轨迹综合。王知行【2 4 儿3 6 儿3 7 j 提出连杆转角 曲线的概念,用二杆组复演要求实现的轨迹,提取二杆组的转角曲线信息并与存入数据 库中的已知机构的转角曲线进行比较,从而找到最接近实现给定轨迹的机构。 随着机械工程中对机构运动性能要求多样性的增加和现代解算技术的发展,越来越 多的机构设计问题可以归结为多约束的近似综合问题,机构优化设计就应运而生。优化 方法的优点在于它能够将各方面的设计要求( 如曲柄存在、分枝、顺序、传动角、杆长 比等) 抽象成约束条件,从而形成多约束的优化问题,在优化过程中直接考虑设计的特 殊要求,属于先验性设计;而其它方法大多是在机构产生后再评价机构的各项性能是否 满设计要求,属于后验设计,因此优选机构的获得需要人工参与不断尝试。r l f o x 和k d w i l m e t t e 3 s 】第一次将优化方法引进轨迹综合,将机构设计要求表示成不等式 约束,通过传统的寻优方法获得最优解。j a n g l l e 掣 j 用最小二乘法进行平面r r r r 机构轨迹发生综合,其优化目标是使结构误差满足最$ - - 乘意义上的最小。胡新生1 4 0 j 针对函数综合的最佳一致逼近这一不可微的最优化问题,提出可微化的最优化解法,并 针对逼近问题常见的不良性态,提出非单调曲线搜索算法。s k o t a 4 l j 将正交实现法和 优化法结合起来研究机构尺度综合问题,在一定程度上解决了优化综合中初始机构难以 选择的问题,对改善优化过程中的局部收敛问题有一定效果。黄茂林【4 2 j 利用等价机构原 理,将平面四杆机构函数发生器的综合转化为等价廓线的轨迹综合。王德伦等在文献【4 3 朋】 提出了具有二次鞍点意义的平面机构运动综合的近似圆点、近似滑点和近似束点的新概 念,建立了平面机构运动不变量自适应近似运动综合的统一数学模型和通用的鞍点规划 求解方法。将实现给定位置、轨迹和函数的多种类型平面四杆机构的近似尺度综合全部 归结为寻求相对运动平面上的近似圆点、近似滑点和近似束点及其组合问题,并在理论 上阐明了平面四杆机构运动综合问题存在最优近似解和收敛性算法。实现了对于任意给 大连理工大学硕士学位论文 定初始值均能收敛到较大范围最优解。自适应方法的提出比较好的解决了平面四杆机构 综合中存在的误差评价标准不统一,初值选取的困难以及无法确定收敛性的问题,在平 面四杆机构综合中取得了较好的效果。 1 3 本文的研究方法 机构分析是机构综合的基础,本文从对一现有机构的分析入手,运用三维仿真软件 对该机构进行运动仿真与分析。通过分析加深对本问题的理解,为后文机构综合奠定基 础。 机构综合首先需要解决的是机构的方案设计问题,这是解决其它综合问题的前提和 基础。如上所述,机构方案设计的方法已非常丰富,考虑到机构运动链再生法的众多优 点和对于本文问题的适用性,本文运用机构运动链再生法对机构进行方案创新设计。 没有尺度支持的方案是不能实现机构预定功能的,考虑到平面连杆机构自适应运动 综合理论的对不同问题综合的通用性比较强,因此,在自适应运动综合理论基础上针对 本文的具体问题建立模型并进行优化求解。 最后将问题回归为机构分析,对运动综合所得结果建立运动分析模型,验证方法的 有效性和结果的可行性。 1 4 本文的主要工作 关于本文机构综合问题的研究分成三个主要阶段:现有机构的分析、方案创新设计、 机构的运动综合,其中后两部分是本文的研究重点。本文的主要内容概括为: ( 1 ) 在详细研究国内外机构方案设计与运动综合的理论与方法的基础之上,确定本 文的研究思路与解决方法。 ( 2 ) 通过调研给出本文综合机构的工作背景及基本运动要求;针对某现有机构,进 行机构的结构分析,运用三维仿真软件建立机构的运动分析模型,并对机构进行运动分 析。 ( 3 ) 运用机构综合的再生运动链法,按运动链一般化、数综合、特定化和具体化的 流程进行机构的方案创新设计。 ( 4 ) 针对本文的运动综合的具体问题给出解决思路,在机构自适应运动综合理论的 基础上对本文的问题进行建模求解。 ( 5 ) 将运动综合所得结果进行运动分析并与现有设计进行结果对比,验证方法的有 效性和结果的可行性。 某八杆十副机构型与尺度综合的研究 2 机构型与尺度综合的理论基础 机构的方案设计与运动综合是机构综合的两大基本问题。本文运用机构再生运动链 法进行方案设计,机构的运动综合基于自适应运动综合理论。所以有必要对两种方法做 简单的介绍。 2 1 基于再生运动链法的机构类型综合 2 1 1 机构再生运动链法 机构再生运动链法【1 2 啪1 是台湾成功大学颜鸿森教授提出的机构创新设计方法,又称 颜式创造性机构设计法。该方法是目前机构创新设计中一种比较系统的方法,具有良好 的操作性。具体分为五个阶段,其设计流程如图l 所示: 数综合 斗寺定化 原始机构 一般化运动链 般化运动链图t 生运动链图谱 一般化原则 数综合理论 设计约 具体化 新型设计方案 一般化原则 图2 。1 再生运动链法流程 f i g2 1 f l o wc h a r to fr e g e n e r a t e dm o t i o nc h a i nm e t h o d 它以现有原始机构工作原理及其结构类型为机构创新设计的雏形,归纳出对新机构 的功能要求与运动链拓扑结构要求作为约束条件。该方法可高效地得到满足现有专利技 术要求,而不受专利保护的技术方案。 一般化就是把原始机构转化为只含有简单转动副和连杆的运动链,其目的就是用最 一般的形式表达和比较机构。其步骤可大体概况为:首先,不指定机架和原动件,将运 动链的高副低代,如图2 2 a ) ;其次是将低副统一转化为转动副,如图2 2 b ) ;然后复 大连理工大学硕士学位论文 合铰链转化为简单铰链,如图2 2 c ) ;最后,去掉尺度因素影响机构便抽象为一般化运 动链。 a ) 址二 b ) c ) 图2 2 一般化原则 f i g2 2 r u l eo fg e n e r a l i z a t i o n 在设计机构时,具有相同构件数和运动副数且相对运动确定的运动链结构不止一 种,因此在设计新机构时就有择优的可能。运动链数综合是指将一定数量的构件和运动 副进行排列搭配以组成运动链的综合过程。其目的是希望能提供完整的运动链结构的各 种类型,为机构的创新设计提供各种可资比较的方案。如前文所述,运动链数综合的方 法不胜枚举,本文采用比较直观易理解的胚图插点法进行8 杆1 0 副运动链数综合。 依据设计约束,分配特定类型的构件和运动副至一般化运动链图谱的过程称为运动 链特定化。即对每个非同构的一般化运动链进行机构识别、运动副识别以及杆组识别以 找出符合要求的解。识别了杆和运动副的运动链称为再生运动链。在再生运动链法中, 设计约束是根据工程实际和设计者的决定来定义的,这些约束是柔性的,视不同情况可 以改变。 运动链具体化是一般化的逆过程,是将再生运动链具体化为机构简图的过程,为机 构的评价选优提供方案。 2 1 2 运动链数综合的胚图插点法 在设计机构时,构件数和运动副数相同实现确定相对运动的运动链结构确不止一 种,因此在设计新机构时就有择优的可能。运动链数综合是指把一定数量的构件和运动 副如何进行排列搭配的以组成运动链的综合过程。如上文所述基于图论的运动链数综合 的方法已经非常丰富,且针对特殊问题各有其优点。胚图插点法【l ,3 】是一种比较直观易理 解的方法。 某八杆十副机构型与尺度综合的研究 ( 1 ) 相关概念 顶( v e r t e x ) 或结( n o d e ) 是一个点,代表运动链中的构件,顶点的度为相应构件 上的运动副数目。 边( e d g e ) 是一条线段,代表运动链中的运动副。 拓扑图( t o p o l o g i c a lg r a p h ) 为边与顶的连通系统,如图2 3 所示为瓦特运动链拓扑 图表示。 图2 3 瓦特链拓扑图 f i g2 3t o p o l o g i c a lg r a p ho fw a t tc h a i n 回路( c i r c u i to rs i m p l el o o p ) 通路的起点与终点重合形成的图的环路。 胚图( e m b r y o n a lg r a p h ) 或缩图( c o n t r a c t e dg r a p h ) 是指在图中删去只连接两边的 顶所得的简化图。 图2 4 瓦特链的拓扑胚图 f i g 2 4e m b r y o n a lg r a p ho fw a t tc h a i n 同构( i s o m o r p h i s m ) 就是具有相同关联性质的图,在两个图之间在它们的点和边的 关联方面保持着一对一的对应关系,称它们同构。 刚性链( r i g i dc h a i n ) 是指自由度数是非正的运动链。 a )b ) 图2 5 刚性链举例 f i g2 5e x a m p l e so fr i g i dc h a i n 大连理工大学硕士学位论文 ( 2 ) 插点法基本步骤 输入运动链构件数刀、运动副数p 。 确定二副杆、三副杆、四副杆、等多副杆数目,伤,心, 平面单自由度闭环机构中,设运动链中的构件数刀和p ,含有f 个运动副元素的构 件数为绝,则有 心+ 伤+ + 哆+ + n r a = n ( 2 1 ) 2 n 2 + 3 n 3 + + 以+ + m = 2 p ( 2 2 ) 由欧拉方程式 l = p - n + l ( 2 3 ) 可得运动链的基本回路数。构件能含有的最大运动副元素数目为 m = l + 1 ( 2 4 ) 则由式( 2 1 ) 、( 2 2 ) 、( 2 4 ) 求解可得构件的类型方案。 确定拓扑胚图 在确定了构件类型以及环路数后,将n j ( i 3 ) 的构件用点表示,用代表构件组成 的边来连接这些点,绣( f 3 ) 构件的点连出i 条边,确定拓扑胚图【1 8 ,1 9 1 ,如图2 4 所示。 将个二度点插入胚图支路,但需满足:任一回路长度至少为4 ,否则会形成 单回路的刚性子链。 删除含有刚性子链的结构类型以及同构结构类型。 2 。2平面连杆机构运动自适应综合理论基础 2 2 1刚体平面运动的矩阵表示 图2 6 描述刚体平面运动的坐标系 f i g 2 6 c o o r d i n a t es y s t e m so fr i g i db o d yi np l a n em o t i o n 某八杆十副机构型与尺度综合的研究 如图2 6 所示,d r x ,y ,为固定坐标系,o x 。y 。为与刚体相固结的运动坐标系,刚 体在固定平面上作沿向量d ,哦平移和绕原点吨旋转的复合运动,其中平移运动量可以 用原点哦在固定坐标系中的坐标( x o ,y o ) 来表示,旋转运动用坐标变换矩阵心来描 若用矢量,:= 【毛,只】2 代表刚体上一点尸在固定坐标系哆巧以中的位置坐标列阵,矢 量乞= 【,】7 代表点尸在运动坐标系吼虼中的坐标列阵,因此刚体作平面一般运动 产。肇m 嘶h 眨6 , m 疗为由运动坐标系仉k 到固定坐标系d ,i 厂巧的变换矩阵,且有: 享 = 萃 = lc s o ;:s p o - c s c 苫i n p o 军l 辜 c 2 7 , 同理,运动刚体上过原点吼的任意一条直线,在固定坐标系哆一所中的位置向量 。鼍问嘶嗣 9 , 大连理工大学硕士学位论文 2 2 2 自适应综合与近似特征点 平面四杆机构的综合就是在运动平面上寻找特殊点,他们在固定平面上的轨迹为 圆、直线、或包络线为圆,称这些特殊点为特征点( 圆点、滑点或束点) 。对于运动平 面的2 至5 位置,可直接应用经典b u n n e s t e r 的理论求解对于多个位置或连续平面运动 函数,只能近似综合,从而得到近似意义上的特征点,称为近似特征点,如近似圆点、近 似滑点或近似束点等。因此平面四杆机构自适应运动综合就是以平面二副杆的约束曲线 为综合要素,在运动平面上寻找轨迹具有特定曲率特性的点或直线的过程。 ( 1 ) 运动平面上的近似圆点 由上文可知,已知运动平面在固定平面上的一系列离散位置,可以求得运动平 面相对固定平面的一系列位移转换矩阵m 。( 卢1 ,2 ,船) ,进而可求其上任意点在固定 平面坐标系o f x f y f 的轨迹r p f ( f _ 1 ,2 ,刀) 可以表示为式( 2 7 ) 。 o 图2 7 轨迹曲线的拟合圆 f i g2 7 t h ef i t t i n gc i r c l eo ft h eg i v e np a t h 若讨论轨迹点集 ,p f 与圆的近似程度,可依据圆的不变量性质,即曲率为常数,与 圆心位置无关,常规意义上的圆心到圆上任一点的距离为常数仅是坐标系中的一种表现 形式;那么,用一圆来拟合点集 ,p f ,若给定拟合圆的圆心位置和半径,称为固定圆拟 合,拟合结果的最大误差与圆心位置及半径,有关,很难得到理想效果;如果给定半径 ,但圆心位置由点集 ,p f 的性质自适应确定,尽可能使最大拟合误差为最小,如图2 7 所示,所得到与点集 ,p f ) 最接近的圆,称为浮动圆拟合,显然,不同半径的浮动圆拟合 某八杆十副机构型与尺度综合的研究 有不同误差,其中必有一个使得最大法向拟合误差为最小的理想浮动拟合圆,称为自适 应拟合圆。 自适应拟合圆是点集 ,p f ) 的所有拟合圆中最大法向误差最小的拟合圆,在邻域范围 内再也没有更好的圆来拟合点集 ,p 0 使得拟合的最大误差减小,具有一次鞍点意义。为 此,按照自适应圆拟合方法,建立自适应圆的不变量拟合误差模型如下: m i nm a xz ( x ) ,f = 1 ,2 ,n x = ( by q , r ) t ( 2 1 0 ) ( 2 ) 运动平面上的近似滑点 记固定平面上一直线三的方向为p ,圆点0 f 到直线的距离为五,则直线的矢量表示 为 r = a ( k 1 ) + n ,l = c o s 0 ,s i n o 1 ( 2 11 ) 对于运动平面上的近似滑点,同近似圆点一样,只是用直线拟合离散轨迹 r p 小声1 ,2 ,刀) ,因此,可构造自适应直线拟合的优化模型为: m i nm a xz ( x ) ,f = 1 ,2 ,行 ,( x ) :i ( r p ,一。i ) 1 1 ,x : 臼,兄】r ( 2 1 2 0 曲线 图2 8 轨迹曲线的拟合直线 f i g2 8 t h ef i t t i n gl i n eo f t h eg i v ep a t h 应用鞍点规划可得 ,p j ) 的自适应拟合直线,其性质与自适应拟合圆相同,即具有极 小性和可比性,从而得到与近似圆点类似的近似滑点的定义及相同的求解方法。 ( 3 ) 运动平面上的近似束点 大连理工大学硕士学位论文 记三m 为运动平面上的一条直线,单位方向为k ,原点o m 到该直线的距离为九,则 该直线在运动坐标系下的矢量表示为,l m = + ,k ,其中m = c o s a ,s i n a 。,r p m = 五( k l m ) = - 2 s i n a ,2 e o s a 1 。仅为直线三m 与轴的夹角,即恤为直线三m 上一固定点,显然p m 点为原点o m 在直线m 上的垂足点。给定运动平面的一系列位置( 尬,i = 1 ,2 , ) ,那么, 直线三m 的单位方向在固定坐标系下描述为 【1 1 玎= m 【乇,1 】2 ,f = 1 ,2 ,n ( 2 1 3 ) 对于固定刚体上的近似束点,是用圆曲线拟合直线轨迹l ,( 卢l ,2 ,门) 的包络圆,如 图2 9 所示。仿造自适应圆拟合可以构造自适应直线族包络圆拟合优化模型: m i nm a xz ( x ) ,i = 1 ,2 ,刀 z ( x ) = l ( r p ,一饧) ( 露,。) 一,1 ( 2 1 4 ) x = k ,y e , r t 图2 9 直线族包络的拟合圆 f i g2 9 t h ef i t t i n gc i r c l eo ft h eg i v e nl i n e - e n v e l o p e 2 2 3 机构自适应运动综合的优化方法 有了上述的综合的模型后,点的轨迹对简单曲线的逼近问题就转化为优化问题,由 上文的讨论可知在运动刚体上寻找特征点或直线的优化模型是一个非线性约束优化问 题,由于目标函数的多峰性和不可微性,用基于导数的传统优化方法难以求得全局意义 上的最优化解,文献【4 3 j 提出使用遗传算法和局部搜索法相结合的混合解法,即在综合的 初期,使用遗传算法获得较好的初值,同时为了避免遗传算法中随机搜索的盲目性,采 用b f g s 方法进行局部搜索,使在具有多峰性的搜索空间内的寻优问题变成多个局部最 优化问题。 某八杆十副机构型与尺度综合的研究 ( 1 ) 优化方法概况鞍点规划问题的解法 在数学中,把函数上具有“极大极小 性质的点,称为鞍点。形象的说所谓“鞍 点 就是处于“马鞍中央的点”,从纵向看,取极小值,从横向看取极大值。把同鞍点 有关的数学问题称为鞍点问题,与之相对应的数学规划,称之为鞍点规划。鞍点规划也 称为“极大值的极小化”,或“极小值的极大化”问题表示如下: 7 i ( x1 9 :月。h 1 1 月,x r m ,】,r n m x i nm ,a x f ( x ,y ) ( 2 1 5 ) xy f 1 气、 则称问题( 2 1 5 ) 为鞍点规划问题。对于一般非线性规划问题: m x i nm ,a xf ( x ,y ) j j g i ( x ) 0 i = 1 , 2 ,p g j ( y ) 0 j = p + l ,p + 2 ,刀 x r ”,】,r ” ( 2 1 6 ) 称为约束鞍点规划i 司趑。 一般情况下,式( 2 1 6 ) 所描述的问题需要化为目标函数及约束函数都可微的一般数 学规划问题,然后根据目标函数的特点可以选用适当的优化方法【4 5 ,矧。 根据极大熵原理【4 5 ,4 6 】可以证明:求解问题( 2 1 6 ) 的解可转化为求解p ,q 为正且充分 大时的如下问题: 哑nf q 伍) v1 , _ s t g p 伍) o j ( 2 1 7 ) 式中 c x ,= 吉n ( 善p 奶似 ,g p 似,= 万1 - n ( 薯p 隅似) 且p ,q 一+ 0 0 ,如p ,q = 1 0 0 0 。下面构造用l a g r a n g e 乘子法求解( 2 1 7 ) 的算法。 构造( 2 17 )

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论