6SIGMA改进阶段ppt72.ppt_第1页
6SIGMA改进阶段ppt72.ppt_第2页
6SIGMA改进阶段ppt72.ppt_第3页
6SIGMA改进阶段ppt72.ppt_第4页
6SIGMA改进阶段ppt72.ppt_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

p1 改进阶段 p2 第五章 主要内容 5 1改进阶段基本任务是什么 5 2怎样揭示y和x间的内在规律 5 3如何确定项目改进的优化方案 5 4如何评估 验证和实施改进方案 p3 5 1改进阶段基本任务是什么 5 1 1改进阶段的步骤寻找解决问题的改进措施 提出改进建议 目标和方法 应用头脑风暴法集思广益 并充分应用统计技术 方法 提高解决问题的效率和效果 x的方案 对改进方案进行综合比较分析 从中挑选优化的方案 x方案的投入 可行性 技術性等進行考慮 对改进方案进行验证 确认有效性后努力实施取得成效精心设计策划 估计可能出现的困难和阻力并加以克服 p4 5 1改进阶段基本任务是什么 5 1 2收集 分析相关数据6SIGMA是基于数据的决策方法 强调用数据说话 而不是凭直觉 凭经验办事 6SIGMA其实是一项以数据为基础 追求几乎完美无暇的管理方法 6SIGMA是工程技术人员应用统计技术精确调整产品生产过程的有效方法 p5 5 1改进阶段基本任务是什么 6SIGMA带来know know的开发 在改进阶段要优化改进方案 寻找关键质量特性y与原因变量x间的内在规律 就需要研究不同因子x在不同水平下与y的关系 并开展试验分析活动 例如 应用正交试验设计DOE方法时 对选用几个因子和几个水平需要作出总体安排 这些因子与水平的确定十分重要 这些数据来源于对已有实践数据的统计汇集和分析 以找出问题发生的原因并分析优化方案的合理范围 使能合理地确定影响关键质量特性的关键因子的水平范围 使试验能高效地开展 做到事半功倍 p6 5 1改进阶段基本任务是什么 y x1 x2 x3 x5 x4 p7 5 1 4改进阶段注意要点要为解决存在的潜在问题提供一系列的可行方案 措施 并进行提炼 优化 要寻找真正的具有创新性的改进方案 并使之具有可操作性 要事先做好细致的规划 力争做到事半功倍 要对改进方案进行评估和验证 实施评估和验证可以证实改进方案的效果 并使大家对改进团队充满信心 可以先做小量驗證 要对改进过程中可能会遇到的困难和阻力提出防范措施 要做好信息交流沟通 当成果有效并获得成功时 别忘了让团队成员分享快乐 5 1改进阶段基本任务是什么 p8 5 2揭示y与x间的内在规律 5 2 1一元线性回归第4章分析階段的例题讨论了碳含量与钢的强度之间有正相关关系 那么 如果我们知道了碳含量 能预测钢的强度吗 或钢的强度可能在什么范围内呢 还有 随着碳含量的增加 钢的强度也在增大 那么 碳含量每增加1个单位 钢强度增加多少呢 上面的相关关系分析不能提供给我们需要的答案 这些要用线性回归的方法来解决 当我们知道了两个变量之间有线性相关关系时 一个变量的变化会引起另一个变量的变化 但是由于存在其他随机因子的干扰 因此这两个变量之间的关系不是严格的函数关系式 线性回归就是用来描述随机变量y如何依赖于变量x而变化的 p9 在线性回归中通常假定随机变量y的观察值是由两部分组成 一部分是随x线性变化的部分 用表示 另一部分是随机误差 用 表示 那么就有y的结构式 一般还假定 我们的任务是通过独立收集的n组数据去估计参数 记为则得y关于x的一元线性回归方程 5 2 1一元线性回归 p10 为估计回归系数 常采用最小二乘法 其思路是 若y与x之间有线性相关关系 就可以用一条之间来描述它们之间的相关关系 由y与x的散点图 可以画出直线的方法很多 那么我们希望找出一条能够最好地描述y与x 代表所有点 之间的直线 这里 最好 是找一条直线使得这些点到该直线的纵向距离的平方和最小 可以通过求导函数的方法求得与的最小二乘估计 其表达式为 5 2 1一元线性回归 p11 5 2 1一元线性回归 对第4章例题的数据 求碳含量与钢的强度之间的回归方程可以通过MINITAB中的Stat Regression Regression得到如下结果 RegressionAnalysis yversusxTheregressionequationisy 28 5 131xPredictorCoefSECoefTPConstant28 4931 58018 040 000 x130 8359 68313 510 000S 1 319R Sq 94 8 R Sq adj 94 3 AnalysisofVarianceSourceDFSSMSFPRegression1317 82317 82182 550 000ResidualError1017 411 74Total11335 23 p12 以上得到的回归方程是 若要系数更精确些 可以利用下面的结果写出 这就是我们求得的二者关系的回归方程 该方程对应的回归直线 一定经过与两点 5 2 1一元线性回归 p13 5 2 2回归方程显著性检验 由最小二乘法所得的回归直线是不是真正反映了y与x之间的关系 要回答这个问题必须经过某种检验或者找出一个指标 在一定可靠程度下 对回归方程进行评价 在一元线性回归模型中斜率是关键参数 若 那么x变化时y不会随之而变化 此时求得的回归方程就没有意义 反之 若 那么方程是有意义的 所以对回归方程的显著性检验就是对如下的假设进行检验 p14 5 2 2回归方程显著性检验 在一元线性回归中进行检验有两种等价的方法 方法之一 相关系数r 对于给定的显著性水平 当相关系数r的绝对值大于临界值时 便认为两个变量间存在线性相关关系 所求得的回归方程是有意义的 方法之二 是用方差分析的方法 这个方法具有一般性 在我们收集到的数据中 各不同 他们之间的波动可以用总偏差平方和ST表示 p15 造成这种波动的原因有两个方面 一是当变量y与x线性相关时 x的变化会引起y的变化 另一个原因是除了自变量x的线性函数以外的一切因子 统统归结为随机误差 我们可以用回归平方和SR与残差平方和SE分别表示由这两个原因引起的数据波动 其中 即自变量的个数 可以证明有平方和分解式 5 2 2回归方程显著性检验 p16 计算F比 对给定的显著性水平 当时 认为回归方程是有意义的 5 2 2回归方程显著性检验 p17 上述叙述可以列成方差分析表方差分析表在MINITAB计算结果的后面部分给出了方差分析表 F 182 55 对应P值0 000 若取显著性水平0 05 那么由于P值小于0 05 所以方程是有意义的 5 2 2回归方程显著性检验 p18 5 2 3利用回归方程做预测 当求得了回归方程 并经检验确认回归方程是显著的 则可以将回归方程用来做预测 所谓预测是指当x x0时对相应的y的取值y0所作的推断 如果x x0 那么y的预测值为 另外 我们还可以给出y0的预测区间 在x x0时随机变量y0的取值与其预测的值总会有一定的偏离 人们要求这种绝对偏差不超过某个的概率为1 其中 是事先给定的一个比较小的数 0 1 即或 p19 就称为y0的概率为1 的预测区间 PI 其中已求得 它的表达式为 其中 是自由度为n 2的t的分布的1 2分位数 可查附表给出 由的表达式可以看出预测区间的长度2与样本量n x的偏差平方和Lxx x0到xbar的距离有关 n越大 Lxx越大 越小时 那么就越小 此时预测的精度就高 x0愈远离 预测精度就愈差 当时 预测精度可能变得很差 在这种情况作预测 也称外推 需要特别小心 5 2 3利用回归方程做预测 p20 当n较大时 如n 30 t分布可以用标准正态分布近似进一步 若x0与相差不大时 可以近似取为 其中是标准正态分布的1 2分位数 下图给出在不同x值上预测区间的示意图 在处预测区间最短 远离的预测区间愈来愈长 呈喇叭状 5 2 3利用回归方程做预测 p21 我们也可以在MINITAB中获得这一预测值 在x0 0 16时的预测值如下 PredictedValuesforNewObservationsNewObsFitSEFit95 0 CI95 0 PI149 4260 381 48 577 50 276 46 366 52 487 ValuesofPredictorsforNewObservationsNewObsx10 160结果表明 当x0 0 16 则得到预测值为49 426 置信度95 的预测区间是 46 366 52 487 5 2 3利用回归方程做预测 p22 学习用minitab来操作 Select Stat regression regression 数据输入 p23 学习用minitab来操作 输入因变量 输入自变量 p24 学习用minitab来操作 输出并分析结果 p25 回归的案例练习 合金的强度y与合金中的碳含量x 有关 为了生产出强度满足顾客要求的合金 在冶炼时应该如何控制碳的含量 如果在冶炼过程中通过化验得知了碳的含量 能否预测者炉合金的强度 p26 回归的案例练习 数据如下 请画出散布图 计算相关系数 回归方程 如果X 0 22 请预测Y并计算置信区间 p27 實際練習 請打開下列的執行程式 請練習溫度和良率之間的關係 利用簡單的線性回歸 請利用二次式的回歸請利用三次式的回歸請評估那一個回歸方式會更好 p28 5 3如何确定项目改进的优化方案 5 3 1试验设计概述一家专门作西装裤的服装公司 想要比较四种不同布料 麻纱 棉质 丝质和毛料做出来的西装裤 哪一种布料的西装裤最耐穿 于是 每种布料做10条西装裤 提供给40位志愿试穿的人各穿6个月 试穿期间每周穿4天 然后再拿回来比较裤子破损的情形 但这里有一个问题是 即使同一种布料作的裤子 给不同人试穿 其破损的程度都不尽相同 何况不同种布料作的呢 换句话说 我们如何分辨哪些破损是由于人为的因素 哪些是因为布料本身的耐磨 还是一些其他因素的影响 p29 5 3 1试验设计概述 试验设计目的确定潜在的少数变量x是否对响应变量y有影响 确定这些有影响的变量x值在什么范围内使响应变量y几乎围绕目标值波动 确定x的值以改变响应变量分布的均值 并减少其波动 确定具有影响的x值使其不可控变量的影响最小 即使响应变量对外部环境的变化是稳健的 p30 5 3 1试验设计概述 试验设计分类全因子试验设计 FullFactorialDesign 部分因子试验设计 FractionFactorialDesign 响应曲面方法 ResponseSurfaceMethodology 田口试验设计 RobustParameterDesign 混料设计 MixtureDesign 调优运算 EvolutionaryOperation p31 5 3 2试验设计的思路 进入 提出试验问题 理解目前状况 响应变量选择 策划后续试验 后续管理 验证试验 试验设计选择 实施试验 数据分析 分析结果及其结论 因子及水平选择 试验设计选择 p32 1 试验问题的提出 明确的提出问题有助于理解所要解决隐含问题的现象 2 对目前状况的理解 为试验问题收集尽可能多的相关历史数据是很有必要的 这有助于理解现在的状况 可以从文献或者涉及的各个方面收集信息 如加工 质量保证 制造 市场 操作人员等等 3 响应变量的选择 选择合适的响应变量 还要考虑响应变量是如何度量的 这种度量的精度应得到保证 4 因子及其水平的选择 试验者必须选择影响响应应变量的关键变量x 因子 x的选择可以使用项目分析阶段的技术 应用于试验中的因子的值 水平 必须仔细选择 通常选用两个或三个水平 最多不宜超过五个水平是比较合适的 水平的范围在试验者感兴趣的区域内应该尽可能的大 5 3 2试验设计的思路 p33 5 3 2试验设计的思路 5 试验设计的选择 这一步是试验设计流程的核心 试验者通过考虑因子的数目 水平多少 所有可能的水平组合 试验成本以及可利用的时间等 来选择合适的试验设计 6 实施试验 这是一个实际收集数据的过程 试验者应该注意尽可能的使试验环境保持一致 另外 精确地测量试验结果 获得高质量数据也应加以注意 7 数据分析 应采用诸如方差分析和参数估计等统计方法 目的就是通过数据分析 找到前面提出地试验问题地所有可能的信息 8 分析结果以其结论 分析完数据后 试验者就必须对他的统计结果坐工程解释 估计它们对提出的试验问题的实际含义 并为提出的问题给出结论 p34 9 验证试验 在把结果提交给他人和在采取实际行动之前 试验者需要实施一个确认试验来评估试验结论的再现性 10 后续管理 试验者将结果提交给他人并采取一些必要的保证措施 行动 为了支持由试验得出的这个改进 需要紧跟着行动 例如操作条件的标准化和检查表与控制图的使用等 来评估试验的后续影响 11 后续试验计划 通常 由于试验问题没有彻底解决 建议进行进一步的试验 试验通常是一个反复的过程 一次试验只能解决问题的一部分 希望后续的试验能处理未解决的问题 5 3 2试验设计的思路 p35 5 3 3正交试验设计 正交试验设计是使用正交表来安排试验和分析数据的一种方法 正交表 orthogonalarrays 于1947年由C R Rao所创 后被田口玄一 Taguchi 简化推广 它在所有研究领域中非常重要 在统计上 主要被用于试验设计 正交表有许多 下表为L9 34 正交表 这里 L 是正交表的代号 9 表示表的行数 在试验中表示要做9个不同条件的试验 4 表示表的列数 在试验中表示最多可以安排4个因子 3 表示表的主体 在试验中它代表因子水平的编号 即用这张表安排试验时每个因子应取3个不同水平 1 2 3 p36 5 3 3正交试验设计 列号 试验号 试验号 列号 L9 34 p37 正交表的正交性 每列中不同的数字重复次数相同 在正交表L9 34 中 水平1 2 3 各出现3次 将任意两列 因子 的同行数字看成一个组合 那么一切可能组合重复次数相同 在表L9 34 中 任意两列有9种可能的组合 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 每一对各出现一次 5 3 3正交试验设计 p38 5 3 4正交设计与数据分析 举例 磁鼓电机是彩色录像机磁鼓组件的关键部分之一 按质量要求其输出力矩应大于210g cm 某生产厂过去这项指标的合格率较低 从而希望通过试验找出好的条件 以提高磁鼓电机的输出力矩 p39 在安排试验时 一般应考虑如下几步 明确试验目的 在本例中试验的目的时提高磁鼓电机的输出力矩 响应变量的选择 响应变量就是试验指标 它用来判断试验条件的好坏 在本例中直接用输出力矩作为考察指标 该指标越大表明试验条件越好 即它是一个望大特性 确定因子与水平 在试验前首先要分析影响指标的因子时什么 每个因子在试验中取哪些水平 在本例中 经分析影响输出力矩的可能因子有三个 它们是 A 充磁量B 定位角度C 定子线圈匝数 5 3 4正交设计与数据分析 p40 水平 因子 并根据各因子的可能取消范围 经专业人员分析研究 决定在本试验中采用如下水平 见下表 5 3 4正交设计与数据分析 p41 4 试验设计的选择 选用合适的正交表 进行表头设计 列出试验计划 1 选正交表 首先根据在试验中所考察的因子水平数选择具有该水平数的一类正交表 再根据因子的个数具体选定一张表 在本例中所考察的因子是三水平的 因此选用三水平正交表 又由于现在只考察三个因子 所以选用L9 34 即可 2 进行表头设计 选定了正交表后把因子放到正交表的列上去 称为表头设计 在不考虑交互作用的场合 可以把因子放在任意的列上 一个因子占一列 5 3 4正交设计与数据分析 p42 譬如在本例中将三个因子分别置于前三列 将它写成如下的表头设计形式 5 3 4正交设计与数据分析 p43 3 列出试验计划 有了表头设计便可写出试验计划 只要将因子的列中的数字换成因子的相应水平即可 不放因子的列就不予考虑 本例的试验计划可以这样得到 将第一列的1 2 3分别换成充磁量的三个水平900 1100 1300 将第二列的1 2 3分别换成定位角度的三个水平10 11 12 将第三列的1 2 3分别换成定子线圈匝数的三个水平70 80 90 则得试验计划 见下表 表中第一号试验的条件是充磁量取900 10 4T 定位角度取10 180 rad 定子线圈取70匝 其他各号试验条件类似得到 5 3 4正交设计与数据分析 p44 列号 试验号 充磁量 10 4T 定位角度 180 rad 定子线圈匝数 匝 试验结构y输出力矩 g cm 5 3 4正交设计与数据分析 p45 5 实施试验有了试验计划后就可以按其进行试验 为了避免事先某些考虑不周而产生系统误差 因此试验的次序最好要随机化 然后将试验结果记录在对应的试验条件右侧 例题的试验结果见前表的最后一列 此外试验要由经过专业培训的试验人员去做 试验结果要用合格的测量仪表进行测量 测量仪表要经过校正 这样测得的结果准确 可靠 还要防止记录错误 5 3 4正交设计与数据分析 p46 6 数据分析 1 数据的直观分析在例题中考虑了三个三水平因子 其所有不同的试验条件共有27个 现用正交表L9 34 去挑选 试验的目的是想找出哪些因子对指标是有明显影响的 各个因子的什么样的水平组合可以使指标达到最大 这可以利用正交表的特点进行数据分析 仍然结合例题进行叙述 为方便起见 把试验结果写在正交表的右边一列上 见下表 并分别用y1 y2 y9表示 所有计算可以在表上进行 5 3 4正交设计与数据分析 p47 a 寻找最好的试验条件我们来看第一列 该列中的1 2 3分别表示因子A的三个水平 按水平号将数据分为三组 1 对应 y1 y2 y3 2 对应 y4 y5 y6 3 对应 y7 y8 y9 1 对应的三个试验都采用因子A的一水平进行试验 但因子B的三个水平各参加了一次试验 因子C的三个水平也参加了一次试验 这三个试验结果的和与水平值分别为 T1 y1 y2 y3 160 215 180 555 类似的我们分别计算 2 和 3 对应的三个试验结果的和与水平均值为 T2 y4 y5 y6 168 236 190 594 T3 y7 y8 y9 157 205 140 502 5 3 4正交设计与数据分析 p48 直观分析计算表 5 3 4正交设计与数据分析 p49 由以上可知 各水平值之间的差异 T1 T2 T3之间的差异也一样 只反映了因子A的三个水平间的差异 因为这三组试验条件除了因子A的水平有差异外 因子B与C的条件是一致的 所以可以通过比较这三个平均值的大小看出因子A的水平的好坏 从这三个数据可知因子A的二水平最好 因为其水平均值最大 这种比较方法称为 综合比较 以上计算的结果列在前表下方 以上计算还可以对第二 第三列上类似进行 其结果都列在表5 3 4的下方 由此可知 因子B取二水平好 因子C取三水平好 综上可知 使指标达到最大的条件是A2B2C3 即充磁量取1100 10 4T 定位角度取11 180 rad 定子线圈取90匝可以使输出力矩达到最大 5 3 4正交设计与数据分析 p50 b 各因子对指标影响程度大小的分析这可从各个因子的 极差 来看 这里指的一个因子的极差是该因子所有水平均值的最大值与最小值的差 因为极差大的话 则改变这一因子的水平会对指标造成较大的变化 所以该因子对指标的影响大 反之 影响就小 在本例中因子A的极差为 RA 198 167 3 30 7对因子B C可同样计算 它们被置于前表的最下面一行 从三个因子的极差可知因子B的影响最大 其次是因子A 而因子C的影响最小 5 3 4正交设计与数据分析 p51 C 各因子不用水平对指标的影响图为直观起见 可以将每个因子不同水平均值画成一张图 见图5 3 2 从图上可以明显看出每一因子的最好水平A2 B2 C3 也可以看出各个因子对指标影响的大小 RB RA RC 因子各水平对输出力矩的影响 5 3 4正交设计与数据分析 p52 2 数据的方差分析在数据的直观分析中是通过极差额大小来评估各个因子对指标影响的大小 那么极差要小到什么程度可以认为该因子对指标值已经没有显著的差别了呢 为回答这一问题 需要对数据进行方差分析 在方差分析中 我们假定每一试验是独立进行的 每一试验条件下的试验指标服从正态分布 这些分布的均值与试验的条件有关 可能不等 但它们的方差是相等的 方差分析中的平方和分解 F统计量的构建和显著性检验可参看第4章的方差分析 这里只给出用MINITAB中Stat ANVOVA GeneralLinearModel获得的方差分析表 5 3 4正交设计与数据分析 p53 minitab方差分析 GeneralLinearModel yversusA B CFactorTypeLevelsValuesAfixed31 2 3Bfixed31 2 3Cfixed31 2 3AnalysisofVariancefory usingAdjustedSSforTestsSourceDFSeqSSAdjSSAdjMSFPA21421 61421 6710 84 960 076B25686 94086 42043 214 250 020C2427 6427 6213 83 380 214Error2116 2116 258 1Total87652 2 p54 由于因子B对应的P值为0 020 0 05 所以在显著性水平0 05上 因子B是显著的 因子A的P值为0 076 0 10 所以因子在显著性水平0 10上是显著的 因子C的P值为0 214 0 10 所以在显著性水平0 10上因子C是不显著的 d 最佳条件的选择对显著因子应该选择其最好的水平 因为其水平变化会造成指标的显著不同 而对不显著因子可以任意选择水平 实际中常可根据降低成本 操作方便等来考虑其水平的选择 在例题中因子A与B是显著的 所以要选择其最好的水平 按前所述 应取A2B2 对因子C可以选任意水平 譬如为了节约材料可选C1 5 3 4正交设计与数据分析 p55 7 验证试验在例题中找到的最佳条件是A2B2 即试验中的第5号试验 其试验结果确为9次试验中指标最高的 但在实际问题中分析所得的最佳条件不一定在试验中出现 为此通常需要进行验证试验 譬如选择条件A2B2C1 该条件就不在所进行的9次试验中 它是否真的符合要求 所以在实际中验证试验是不可少的 即使分析所得的最佳条件子阿试验中出现 也需要通过验证试验看其是否稳定 譬如在例题中对条件A2B2C1进行了三次试验 结果分别为 234 240 220 其平均值为231 3 看来该条件是满意的 接下来就是要对得出好的试验条件进行管理控制 若不满意 可以进行下一轮的试验设计 从而使试验结果不断改进 5 3 4正交设计与数据分析 p56 例2 市场调研 新产品试销 的正交试验设计试验目的 某厂开发的 电热卷发器 为调查市场 顾客 对产品结构的满意程度 在试销过程中应用正交设计法 以求得到最好的组合方案 考核指标 销售量根据电热卷发器结构图不同部位设置因子和水平 列出因子水平表 见下表 5 3 4正交设计与数据分析 p57 因子水平表 5 3 4正交设计与数据分析 p58 因子 试验号 正交表L8 27 与试验结果 5 3 4正交设计与数据分析 p59 我们利用直观数据分析方法寻找最好的试验条件 首先根据各因子的两水平的极差R值的大小 得出各因子对指标影响的大小排序为 AFDEBC 然后对每个因子比较两水平的试验结果的和 即T1 T2 可知因子各水平组合的最好条件为 A1F2D2E2B1C1 对于因子间有交互作用的正交设计与数据分析 参见 六西格玛核心教程 黑带读本 5 3 4正交设计与数据分析 p60 5 4如何评估 验证和实施改进方案 5 4 1改进方案的评估标准总成本 实施改进的成本不能超过可用的资源 通常 突破性改进需要投入适当的费用 而一些最初的投资是必需的 对解决问题的影响 团队需评估选择的改进方案对解决问题的影响 一些改进方案可能比其他改进方案对解决问题的有效性更好 收益与成本比 当总成本与总收益是重要的考虑因素时 每项供选择的改进方案的成本与它对团队使命的影响进行的比较甚至更重要 收益成本比较差的改进方案是不好的选择 p61 5 4 1改进方案的评估标准 企业文化的影响 变革受到的阻力 在技术和操作上进行的变革通常会引起企业内部文化的改变 而这些改变可能产生阻力 人们常会害怕新的及未尝试过的改变所带来的影响 当评估供选择的改进方案时 改进团队必须考虑到每项改进建议对那些受其影响的人们所造成的影响 可能的阻力并非是阻止实施改进的充分理由 但它可能会影响到其他因素 其他因素的影响若是同等的 则阻力最小的改进方案值得推荐 实施时间 改进团队将估计实施改进方案所需花费的时间 并衡量达成解决的迫切性 越紧急的事情 时间因素越重要 p62 5 4 1改进方案的评估标准 效果的不确定性 即使改进方案有令人满意的收益成本比 它也可能并非好的解决方案 例如 某改进需要引用未经检验的技术或对企业的运营有大的改变 即使成本相对较低而潜在的汇报很高 但回报的不确定性可能也会很高 风险较大 健康 安全与环境 所提议的改进方案不应该对顾客 社会或企业内部的工人的健康和安全构成新的威胁 改进方案的环境因素如不是积极的 也至少该是中性的 在评估了供选择的改进方案后 6SIGMA团队通常会赞同最有希望解决问题的方案 有时候 团队会结合几项改进方案的某些特征 吸收各自的长处 作进一步改进 p63 5 4 2改进方案的选择矩阵 现有一矩阵可供团队用来评估各种供选择的改进方案 根据评估标准 你能用它来评定每项改进方案 填入 H 高满意度 M 中等满意度 或 L 低满意度 来显示对此因子期望达到的影响的相对满意程度 注意总成本的 H 表示最使人满意的效果 也就是说 成本很低 此矩阵可通过许多方式来使用 每位6SIGMA团队成员先完成矩阵 然后得到所有成员的平均分 团队可讨论每项标准 然后统一对每个改进方案给出评分 总评分可通过对每项标准给出数量上的权数 再计算出平均分来得到 或者根据判断来评估每项改进方法所产生的效果得到 p64 5 4 2改进方案的选择矩阵 p65 5 4 3改进方案的精心策划 一旦质量团队选定了一项改进方案 可通过履行下述任务来进一步完善设计改进方案 确认改进所需达到的目标 团队需要重新检查项目目标以确认改进想取得的成果 且所有团队成员均需在此点上达成一致 这是设计改进方案实施前的最后检查 确定所需资源 团队必须尽一切努力 尽可能准确地确定完成改进方案所需地资源 这些资源包括 人力 资金 时间 材料 详细说明改进程序和其他所需进行地改进 在实施改进前 团队必须清楚描述提议地改进方案所需地程序 团队还必须描述对现存地组织政策 程序 系统 工作模式 汇报制度和其他的紧急操作所需进行的变革 任何一个意外都可能使改进陷入被动 p66 5 4 3改进方案的精心策划 估计所需的人力资源 任何改进方案的成功均取决于愿意实施变革的人们 所以经常需要对人员进行培训或再培训 团队必须彻底考察所有的培训要求和所需的培训资源 一旦完成了这些任务 团队可能要进一步绘制新的流程图来详细 清楚地阐明新的改进程序 防止和克服改进过程中变革所遇到的阻力 不少项目改进会引起组织上的变革 这是较自然的事 变革想要达到的目的是给内部和外部顾客提供更好的 质量更高的产品或服务 更有效率的工作程序 减少浪费等等 实际的效果 哪怕从技术上来讲是合理且吸引人的 仍会对社会产生影响 任何变革均会被那些受到影响的人视为威胁

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论