(电力系统及其自动化专业论文)柔性约束的电网规划研究.pdf_第1页
(电力系统及其自动化专业论文)柔性约束的电网规划研究.pdf_第2页
(电力系统及其自动化专业论文)柔性约束的电网规划研究.pdf_第3页
(电力系统及其自动化专业论文)柔性约束的电网规划研究.pdf_第4页
(电力系统及其自动化专业论文)柔性约束的电网规划研究.pdf_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

! :塑窒婆叁堂丝! ! 笙苎 ! 塑! 竺! 旦墨丝竺塞盟也型苎! ! ! ! 塑 r e s e a r c ho fp o w e r n e t w o r k s p l a n n i n g b a s e do nf l e x i b l ec o n s t r a i n t s a b s t r a c t w i t ht h ed e v e l o p m e n to fe c o n o m i c sa n dp o w e rm a r k e t ,f l e x i b l ep l a n n i n go f e l e c t r i cp o w e rn e t w o r ki sg e t t i n gm o r ea n dm o r ef o c u s t h i sp a p e ri n t r o d u c e ds o m e m a j o ra c h i e v e m e n t so f t h ef l e x i b l ep l a n n i n gf i r s t t om a k ei tp o s s i b l ef o rd i f f e r e n t p l a n n i n gm e t h o d sc o o p e r a t ew i t he a c ho t h e ra n dm a k e u s eo ft h ei n t e g r a t e dr e s o u r c e o fe l e c t r i c p o w e rn e t w o r k ,an o v e l m e t h o do fp o w e rn e t w o r kp l a n n i n gb a s e do n f l e x i b l ec o n s t r a i n t sw a sp r e s e n t e d t h i sm e t h o da l l o w ss o m e1 i n e si nt h ep o w e r n e t w o r kt oa p p e a rc e r t a i no v e r l o a di ns o m ec a s e sa n du s eo t h e rm e t h o d st oe l i m i n a t e t h eo v e r l o a dt og a i nm o r ee f f i c i e n ts c h e m e g e n e t i ca l g o r i t h m sw e r ei n t r o d u c e dt o t r e a tw i t ht h i sm e t h o d as e to f o p t i m i z i n gm e t h o d sw a sa d o p t e dt om a k et r a d i t i o n a l g e n e t i ca l g o r i t h m s t ob em o r ef e a s i b l ef o rt h ee l e c t r i cp o w e rn e t w o r k p l a n n i n g t os h o wt h ew a yo fp l a n n i n gw i t ht h ei n t e g r a t e dr e s o u r c eo fe l e c t r i cp o w e r n e t w o r k ,t w od i f f e r e n tm a t h e m a t i c sm o d e l so fa d o p t i n gg e n e r a t i o na d j u s t m e n tb a s e d o nt h ec o n c e p to f p l a n n i n gw i t hf l e x i b l ec o n s t r a i n t sw e r ee s t a b l i s h e d t h ef i r s to n e , w h i c hi sc a l l e da s y n c h r o n o u sp l a n n i n gi nt h i sp a p e r , d e t e r m i n e st h et o p o l o g yo ft h e e l e c t r i cp o w e rn e t w o r kw i t hf l e x i b l ec o n s t r a i n t sp l a n n i n ga tf i r s t ,t h e na d j u s t st h e g e n e r a t i o nt oe l i m i n a t et h eo v e r l o a da n dc h e c kw h e t h e r t h es c h e m ei sf e a s i b l e t h e o t h e rd i r e c t l ya d o p t st h eg e n e r a t i o na d j u s t m e n ti ni t sm o d e la n di sc a l l e ds y n c h r o n o u s p l a n n i n gi nt h i sp a p e r b ym e a n so fp l a n n i n gs c h e m e s ,f l e x i b l ec o n s t r a i n tp l a n n i n gw a sp r o v e dt ob e b e t t e rt h a nt r a d i t i o n a lm e t h o d t h ea d v a n t a g e sa n dd i s a d v a n t a g e so f a s y n c h r o n o u s p l a n n i n ga n ds y n c h r o n o u sp l a n n i n gw e r e a l s od i s c u s s e d k e yw o r d :e l e c t r i cp o w e rn e t w o r kp l a n n i n g ,f l e x i b l ec o n s t r a i n t s ,a s y n c h r o n o u s p l a n n i n g ,s y n c h r o n o u sp l a n n i n g ,g e n e t i ca l g o r i t h m s ! :塑奎垫叁堂塑! ! 堕兰 ! ! ! ! ! ! 旦 一i 型塑塑壅塑些旦塑型! ! 丝 第一章绪论 1 1 电力系统规划概述 i 乜力:f = 业是国民经济中的一个非常重要的部门,它的发展水平不仅对其它行 、l k 部门会产生巨大的影响,还涉及大量一次能源的消耗和巨额的投资。合理地进 行i u 力系统规划可以获得很大的经济效益和社会效益。相反,电力系统规划的失 误会给国家建设带来不可弥补的损失。因此,对r 乜力系统规划问题进行研究具有 重火的现实意义1 ”。 电力系统规划山电力负荷预测、电源规划和电网规划等部分组成。电力负荷 预测是电力系统规划的基础,它提供电力增长、负荷曲线及电力分布情况。电源 规划和电网规划在负荷预测的基础上确定发电机组的扩建、退役和更新计划,确 定电源的合理结构及未来输配电网络的电压等级、网络结构等。电网规划以电源 规划方案为基础,反过来又对电源规划产生一定的影响。就电力系统而言,电源 规划和电网规划实质上是一个不可分割的。但由于两者的侧重点不同,并且统一 解决这两个问题非常困难,所以目前不得不分丌处理电源规划和电网规划的问 题。本文主要针对的是电网规划部分。 电网规划是电力系统规划的重要组成部分,其任务是根据规划期间的负荷增 长及f 乜源规划方案确定相应的最佳电网结构,以满足经济可靠输送电力的要求。 电网规划的基本原则是在保证将电力安全可靠地输送到负荷中心的前提下,使电 网的建设和运行费用最小。这里的可靠性要求包括: 1 ) 正常运行要求:在f 乜力系统设备完好的情况下,保证各项运行指标,如 线路输送功率、发电机 h 力、系统电压水平和稳定储嵛等在给定的允许范围之内; l ! :塑茎塑查兰塑! :垒苎 垫! ! 兰! 旦兰型壁业型盟鱼堕丝垄! 型堕 2 ) 安全运行要求:在某些设备故障、检修( 如n i 或n 2 运行方式) 的情 况下,满足给定的供电可靠。陀要求。 1 1 1 电网规划的特点 i u 恻规划是一个系统优化问题,具有如下特点: i ) 离敝性:线路是按整数的回路架设的,所以规划的决策变量必然是离散 的、或足挫数的; 2 ) 动态性:网架规划不仅要满足规划年限的经济、技术等性能指标要求, 而n 要考虑到网络的今后发展以及今后网络性能指标的实现问题: 3 ) 非线性:线路电气参数与线路功率及网损等费用的关系是非线性的; 4 ) 多目标性:规划方案不仅要满足经济、技术一l 的要求,还必须考虑社会、 政治及环境等因素,这些因素常常是相互冲突和矛盾的: 5 ) 不确定性:负荷预测、设备有效性及水力条件等均存在显著的不确定性。 1 1 2 电网规划的主要研究领域 电网舰划是一个相当复杂研究工作,包含许多的决策问题,而且这些决策之 m 相互关联、相互影响| 2 1 。要在一个规划模型中全面包含所有决策问题是难以实 现的。通常的做法是将规划问题分解成相对简单的子问题分别加以研究。 按规划期间的时问挺短米分,电网规划可分为: 短期电网规划 巾、长期r 【i 网舰划 远景电网规划 短期i 乜网规划又称静态也网舰划,通常只对米米柴一负荷水平年的电网接线 方案感兴趣,不要求考虑接线方案的过渡问题,因而也称为水平年规划。短期电 网规划j f 】问一般在5 年龙有。规划j 】问在l o 2 0 年的规划问题属于中、长期电网 2 i :塑窒望叁堂! 堕! :堡苎 ! ! ! ! 竺! 旦鲞丝丝塞竺堂塑塑型! ! 塑 规划问题。由于中、长期屯网规划规划期问较长,所以需要将规划期分为多个水 平年并考虑个水平年规划方案的过波问题,又称为动态规划。远景电网规划通过 刈术束发展情况的简单分析,给出根据环境参数进行技术选择的一般原则,并作 最后的初步选择。它的规划期间在3 0 年左右。z l l , 规划问题相互联系、相互 i : ;响。远景电网规划所作出的技术选择可通过中、长期电网规划实际状况进行修 证,短期电网规划可以对中、长期电网规划引入的假设进行精确分析和验证,而 同时中、长期电网规划又可以指导短期研究,确保短期决策与中、长期电网发展 十h 致。 1 1 3 传统的电网规划方法 早期的也网规划方法以方案比较为基础。这利,方法从几个设定的待选方案中 通过技术经济比较选择出推荐的方案。然而,参加比较的方案往往是规划人员凭 经验提出的,并不一定包括客观上的最优方案,更不可能包含全部的可行和可能 方案,因此最终推荐方案就包含相当的主观因素和局限性。 随蓿汁算机技术和运筹学的发展,使得电网优化规划方法应运而生。目前电 网优化舰划方法主要分为启发式方法( h e u r i s t i cm e t h o d s ) 和数学优化方法 ( m a t h e m a t i co p t i m i z a t i o nm e t h o d s ) 两类1 3 】1 4 】。 ( 1 ) 肩发式方法 启发式方法是以直观分析为依据的算法。这种方法比较接近工程人员的思 路,可以根据经验和计算分析给出较好的设计方案,但不是严格的优化方案。在 屯网规划中,启发式方法直观、灵活、计算时间短,便于人工参与决策且能够给 i :符合工程实际的较优解,因而得到了比较广泛的应用。电网规划启发式方法的 计算过程可归纳为负荷校验、灵敏度分析和方案形成三部分。 ( 2 ) 数学优化方法 ! :塑窒塑叁兰型_ ! 堡兰 ! 塑! 竺! 旦 墨! ! | 兰坐塑竺垫坚型! ! ! ! 丝 f 乜网规划的数学优化方法就是将电网规划的技术要求归纳为运筹学中的数 学十萸慢,运川数学优化的方法刘l c 进行求解,以获得域优的规划方案。与启发式 ,j - 、? i4 l i 比,数学优化方法考虑了各变量之问的影响,闪此在理论上能获得严格的 坡优方案。但山于i u 网规划是一个高维数、非线性的复杂规划问题。因此在规划 模型的求解巾不得4 i 进行火! 的简化,加上一些决策因素无法用数学模型来表 述,凶 :数学上的蛙优解米必是符合一卜程实际的蛾优力+ 案。 1 2 电网灵活规划概述 乜网灵活规划通过各种方法全面考虑影响电网规划的各种因素,从而得到与 工程实际相符合的最优方案。目前电网灵活规划主要分为两个方向。一类是通过 引入新方法和新理论,主要是运用新的数学工具,对电网的不确定性进行描述的 规划方法。对于环境的不确定性,传统的解决方法有两种:一种是对其中一种实 现概率最大的情况进行规划,求得一个满足该种情况的确定最优方案;另一种是 求解一种能满足所有情况的所谓“鲁棒性方案”【5 1 。这两种规划方法的缺点显而 易见,对于前者,一旦预想环境有所改变,其方案由于缺乏必要的适应性,将不 得不付出高昂的方案切换费用,所以具有很大的决策风险。而后者,由于必须满 足所有情况,使得投资大大增加而降低了方案的经济性。为了克服传统规划的这 不足,通过各利t 方法在舰划中计及不确定因素,以使规划方案在未来情况发生 变化时能以较小的切换费用适应变化成为针对不确定性的规划方法的指导思想。 所以这类规划方法所得到的规划方案并不是针对某一种情况的最优解,而是对于 各种情况都有较好适应能力的次优解,是在经济性和适应性之间寻求平衡的一种 折衷方案。这类规划主要有随机规划方法,模糊规划方法,狄色规划方法,多场 景规划,以及一些运用人工神经元理论、专家系统、混沌理论的规划方法等。另 变j j 】1 人学倾i :论文2 0 0 1 i 二i ,j 粜p j :约束的i b m j i ! i ! 划彤! 塑 一类赴通过重新定义电网规划中的资源概念,综合利用电网中各种可利用资源, 形成既能满足能源服务,义能在整体上l 跌得域优的综合规划方案。与传统电网规 划方法只把电网的拓扑结构作为舰划剥象不i 司,这类方法将电网的负荷结构、可 避免f t l ! f ( 、可避免峰荷容量、发电i n 力能力等等都作为规划中可利用的资源【引。 这类方法的主要代表是综合资源规划与需求方管理技术。对于上述灵活规划方法 术文将在下一章进行具体论述。 1 3 本文的主要工作 本文的主要工作分为如下部分: ( a ) 提出柔性约束的概念,将规划的约束条件作为规划中的可用资源,从 而使规划方案不再是被动的适应约束条件,而是主动地在约束条件和目标函数间 寻求最佳平衡,并为其它手段和规划资源的综合利用提供了条件 ( b ) 对传统遗传算法进行优化,使之更适于电网规划 ( c ) 在柔性约束概念的基础上建立了电网柔性约束规划的数学模型,并用 遗传算法进行求解: ( d ) 在电网柔性约束规划基础上,引入了发电出力调整部分,分别对两种 引入方法进行建模,求解; ( e ) 通过对电网算例的计算,将这三中规划方法及传统规划方法分别进行 比较,并讨论了它们的优缺点。 ! :塑奎塑叁堂堡! :丝皇 垫! ! 竺! 旦 墨丛丝塞塑! ! ! 型! ! ! 堕 第二章灵活规划的主要方法 2 1 针对不确定性的规划方法 2 1 1 电网规划中的不确定问题 n 网舰划研究的是未来的电网架线方案,所以舰划结果是以对未来规划环境 的预测州假发为丛础的。但足,经济的活跃和e 结果的不可知性,往往使得未来 情况难以预测”1 。这样就使得规划人员不得不在许多参数不确定的情况下进行规 划。不确定因索根据产生原因和性质可以有不同的划分。 按产生原因的不同可以分为: ( 1 ) 信息的不确定性: 信息的不确定性主要包括负荷发展水平的不确定性、负荷位置的不确定性、 电厂选址和装机容量的不确定性等等。其中未来负荷发展水平是众多影响电网规 划的不确定因素中最为重要的”1 。 ( 2 ) 合作和竞争的不确定性: 合作和竞争的不确定性主要是指山于电力工业中竞争机制的引入,各大电力 公司之问将来合作和竞争的可能性给规划问题带来的不确定性。在我国。随着电 力工业改革的深入发展,这种因素的作用将日见重要。主要包括竞争中各电力集 团剥市场占有的不确定性、i 乜力公司问联合发电可能性所产生的不确定因素以及 山于各大区电网联网的时间、效益潜力所产生的不确定性等。 ( 3 ) 赞用和经济参数的不确定性: 费用和经济参数的不确定性主要包括设备花费的不确定性,利率的不确定 性,汇率的不确定性,电能价格的不确定性,规划者所受资金约束的不确定性等 等。 ( 4 ) 现有和将来设备的不确定性: 现存设备的不确定性主要包括:设备将米的效率,可用性和设备的寿命。将 来设备的不确定性主要包括:设备延期投入使用的风险,新型设备的确切性能( 热 效率、利用率) 将无法作出准确的估计。 ( 5 ) 其它因素: j f :】_ 变通人学坝i :论文! 塑! 兰! ! ! 柔悱约束的l 乜刚j ;! i ! 划研究 其它因素包括法规、政策、环境等因素所造成的不确定性。特别是随着环保 观念i 益深入人心,人们对输电线的电磁场问题产生了一定的疑虑。这必然会增 加土见划过程巾不确定性。同时,我国正处于改革深化的时期,特别是电力系统正 向蓿市场化的方向迈进,在这一过程中,政策和法规的变动也必然会增加规划的 不确定因素。 按性质不同,可以分为: ( 1 ) 随机因素: 不确定性因素有一部分满足某利t 概率分前i ,并且在一定时问内这种分析i 是不 会改变,这类不确定因素被称为随机因素。随机性足l j i 于事物因果律破缺而造成 的种不确定性,它反映的事物本身有明确含义,只是由于事物发生的条件不充 分诵i 使得条4 - t :与事物之问不能出现确定的因果关系,从而使事件的发生与否表现 出不确定的性质。这类不确定因素可以是设备的可靠性、节点负荷的预测数据以 及一些与规划相关的工程按时完工的可能性等等。由于采用概率方法的前提是假 设在一个长时间内事件发生的频率将以随机分布形式作用,因此随机因素需要进 行大量的样本数据分析和处理。 ( 2 ) 模糊因素: 在电网规划中,许多不确定因素由于数据不完整或者不具备随机分布的特 性,无法用概率来表示,其中具有模糊性质的不确定因素被称为模糊因素。与随 机性不同,模糊性是排中律的一种破缺,故模糊数学是从模糊性中去确立广义的 排中律隶属规律。1 9 6 5 年,美国加9 l i 大学的z a d e h 教授发表了著名论文“模 糊集合”,标志着模糊数学的诞生。模糊集合理论成为处理这类因素的有效方法。 在电网规划中模糊因素主要有负荷预测值、发电机装机和出力等。 ( 3 ) 灰色因素: 灰色因素是指规划中信息不全的因素,即狄色因素的部分信息是已知的、部 分信息是未确知的。未确知信息与随机信息不完全相同,确切的说,随机信息是 未确知信息的特例。随机信息是以随机试验为背景的信息,通常客观地描述了未 来习 物。其一切试验结果都是已知的,总可信度为l 。而未确知信息的实验结果 通常是不完全已知的,所以总可信度小于1 。不管客观事物是确定的还是不确定 的,是已发生还是未发生的,只要决策者不能完全把握它的真实状态或数量关系, 湘交通人学倾,卜沦文 柔性约束的r 也网规划研究 那么,它就被称为米确知的。狄色因素与模糊因素| ,f j 差别在于狄色的概念着重研 究外延l 蝈确、内涵不明确的刑象,而模糊概念则是研究外延不明确、内涵明确的 刘象,l i j l i , j 狄色系统理论认为随机过程是在一定的范围内变化的狄色过程,是一 个l 有上、下限的狄色区问。 ( 4 ) 其它因素: 在i 乜网规划还存在着一些现在还难以用数学工具表述的不确定因素,如政策 f r :j 变化、观念的改变、法律的修改等等。 d i 于不确定因素的多种不同性质,要在一个模型中同时考虑不同的不确定因 素是相当困难的。目前的不确定规划往往是针对某一类不确定因素,甚至是某一 类彳:确定因素中的某种情况的,主要有随机规划“”、模糊规划“0 1 、灰色规划3 、 盲数规划“”等等,下面对它们分别介绍: 2 1 2 随机规划( c h a n c ep r o g r a m m i n g ) 随机现象是人们最早认识到的不确定现象,概率论和数理统计理论也是研究 最早、发展最为成熟的针对不确定问题的数学工具。因此,随机规划最早被引入 电刚规划用来对电网中的不确定因素的进行处理。根据管理和技术目的的不同, 随机规划可以分为三类“”:第一类处理随机变量的方法是所谓的期望值模型,即 一种在期望值约束下,使目标函数的概率期望达到最优的模型。第二类方法是由 c h a r n e s 等提出的所谓机会约束规划( c h a n c ec o n s t r a i n e dp r o g r a m m i n g ) “”, 主要针对约束条件中含有随机变量,且必须在观测到随机变量的实现之前作出决 策的情况。第三类随机规划是相关机会规划( d e p e n d e n t c h a n c eg o a l p r o g r a m m i n g ) “”,它是使事件的机会函数在不确定环境下达到最优的方法。 随机规划需要通过随机潮流得到电网潮流指标,所以随机潮流是随机规划的 基础。随机潮流的计算方法可以分为两种:第一种是m o n t e c a r l o 模拟法,它通 过采用伪随机数发生器产生许多不同的输入状态,然后对每个状态进行常规潮流 计算,从而构造出输出变量的概率分布。在理论上这种方法没有任何限制,但要 得到精确的结果必须进行大量的抽样计算:第二种是分析法,这种方法基于概率 理论,利用卷积等技术进行解析计算,一般计算量较小。但由于其内在的复杂性, 在实际计算中不得不进行大量的简化工作,从而限制了分析法的准确性。 期望值模型是在期望约束下,使目标函数的期望值达到最优的数学规划。在 型! 竺塑叁堂塑! :堕兰 ! 塑! 竺! 旦篓堕塑堕苎些型塑燮 f u 叫规划- p 主要用于使投资费用期望值最小、过负荷期望值最小之类的问题。其 数学模型的一般形式为: m a x e f ( x ,绷 s t e g x ,0 1 - 一j蛔d 走k 积 矿幢 ,阶阡 i ! ! ! ! 銮翌叁堂堂! ! :堡兰 ! ! ! ! 生! 旦塞丝苎堕堕塑塑业翌! ! ! 堕 f f 标是习i 件的机会函数:3 ) 一些决策变量是随机相关的:4 ) 一些事件的机会函 数址秆f 芙的。 m a x f ( x ) = p r x l i + x 2l + x ,i = c i m a x ( x ) = p r ( x 12 + x2 2 + x3 2 = c 2 i n f i x f 3 ( x ) = p r x 1 】+ x2 3 + x ”= c 3 ) i l a x ( x ) = p r ( x 1 4 + x 2 。+ x3 4 = c 4 ) i l l a x t ( x ) = x ) l + x 】2 + x 3 ) + x 4 3 ( 2 - 4 ) s t x i i + x l2 + x l3 十x 1 4 号1 x 2 i + x 2 2 + x 2 3 + x 2 4 号2 x j i + xj 2 + x ) j 十x 3 d 号3 x “0 , i 2 1 , 2 ,3 ;j 2 1 , 2 ,3 ,4 相关机会约束规划的计算方法一般是先将机会函数转换为不确定环境中的 诱导约束,然后运用遗传算法进行求解。通常对于复杂的诱导约束,采用随机模 拟的方法更为方便。 2 1 3 多场景规划 多场景规划方法也是钊对规划中的随机因素的,与上述随机方法不同的是多 场景规划方法通常针对离散的随机因素。在电网舰划尤其是配电网规划中经常需 要考虑这类不确定因素。比如:在某一城市未来规划中将建造一座大型的自动化 工厂,但是工厂的选址还没有确定。无疑,无论工厂建在城市的哪一个地区,都 将为该地区提供更多的就业机会,导致人口增加、居住区和相关的服务行业发展, 引起电力负荷的较大变动。如果用确定性规划方法,则无论针对哪一种工厂选址 方案,当未来情况发生变化时,都将不可避免的付出很大的切换费用的代价。第 一类随机规划方法也不适用于这种情况。如果运用期望值模型进行规划,则各地 区的未来电网负荷为工厂不同选址方案的平均值。这样所得到的规划结果不能适 用于任何一种情况,因为工厂只能建在某一个地方,而不能分成几个部分,分别 建在各个地方。对于这种情况,多场景规划提供了比较有效的解决方法。 多场景规划适用于配电网的长期多阶段规划,其主要步骤为: 步骤一:首先列出将影响城市电网负荷大小和负荷分布的因素,如工厂可能 选址有三利可能性、高速公路的出口可能开在南区或者北区、地铁可能延伸也可 能不延伸等等。确定各种因素发生的可能概率,运用排列组合的方法,确定场景 的数量、各个场景的概率和场景中各因素的情况( 某些因素可能是相关的,如: 一【厂选址在南区,则高速公路出1 7 1 客在南区,运用概率论的方法也不难进行相应 ! :塑壅塑叁堂些:! :堡兰 ! 塑! 兰! 旦 鲞竺丝鉴塑坐塑型垄! ! 堕 的计算) o 步骤一:对于各个场景分别进彳配 u 嘲舰划,然后进行规划方案的比较和归 纳。在这一个阶段需要确定各待选线路和变 乜站的所有场景的必要程度,即在越 多场景l p 需要建设的待选元件的必要程度越高。所以,需要确定每个元件在所有 场景巾的最大容量、平均容量及其方差; 步骤三:接着,运j f _ 1 j 上述数据修正变压器和输电线路的数据,然后利用修正 后f j 数据刘于概率最大的场景进行短期规划,其目的是使必要程度高的元件的造 价人为地降低,增加其在规划中入选的可能性,同时抬高必要程度低的元件的造 价,降低其入选的可能性; 步骤四:最后,计算出对于所有场景多场景规划方案的切换费用,计算出总 j 6 1 用的方差,将之与基于概率最大场景规划方案的总费用相比较。如果满意则输 j 规划方案,不满意则重新修正元件数据,重复步骤三的工作,直到满意为止。 文献 1 7 对于一个有1 2 个场景的配电网规划问题运用多场景规划方法进行 了求解。结果表明运用多场景规划所得的规划方案总费用( 即:短期投资费+ 切 换费用的期望值) 比仅对最大场景进行规划的方案总费用节省9 6 。多场景规 划的计算时间是普通规划方法的9 倍,主要是因为多场景规划需要对不同场景分 别进行规划,但其人工仅增加了2 5 ,也就是说,多场景规划的主要支出是机时 的增加。考虑到它可以大大节省投资风险( 以1 9 8 5 的价格,该配网方案的支出 为四千四百万美元,9 6 扣除通货膨胀的影响相当于节省了三百多万美元的支 出) 和计算机的飞速发展,机时的增加是可以接受的,多场景规划的运用前景非 常广阔。 2 1 4 模糊规划( f u z z yp r o g r a m m i n g ) 模糊规划是针对自然界模糊现象进行规划的方法,其研究对象及其关系均具 有模糊性,其模糊对象的成员没有精确定义的判别准则。一个概念可以从三方面 描述1 1 8 :内涵:用概念内在特征来描述概念:外延:用符合概念的全体元素来 描述概念;结构:用该概念与其它概念的相互关系来描述该概念。模糊规划着重 研究外延不明确而内涵明确的问题。在实际生活中这类问题很多,比如:“多” 和“少”,“胖”与“瘦”,人们可以明确的理解概念的内涵,但是却无法找到明 确的边界来划分它们。从差异的一方到另一方,中间有一个从量变到质变的过程, 这是由排中率造成的不确定性。模糊集正是反映了此类“亦此亦彼”的模糊性。 与确定现象“非此即彼”的性质不同,所以它不满足集合论中的互补律。 模糊数是定义在实数域上的一类特殊的模糊集,它在模糊规划理论及计算技 海交通人学坝士论文 柔性约柬的l u 叫j j | l ! 划研究 术t ,起着十分重要的作用。其定义如下: 定义2 1 若t 是实数域r 上的f 常模糊集,目对于任意0 4a 1 ,其截击 i 。足一个闭区问,则称是t 一个模糊数。 山上述定义可以看出,模糊数是实数轴上的一个闭区问数。此外,模糊数还 可以定义为实数域上的具有凸的分段连续的隶属函数的模糊集或是一个实数域 t 叫? 丌半闭的区间数。山于在实际的工程与社会经济的系统中,许多因素不能用 确定的数量来拙述,但人们却知道这些量的范围以及属于该范围的程度。模糊数 为这些因素的描述提供了一个有效的数学工具。最常用的模糊数为梯形模糊数和 三角模糊数。这两种模糊数都是根据其隶属函数的几何形状命名的。 线性模糊规划的一般模型为: m a xs = c x s ta x b ( 2 5 ) x 0 其中兰表示某种弹性约束,意指“近似小于或等于”,a x 至b 是由m 个f 集 表达的,计为d i ( 滓1 ,2 ,m ) ,那么d i 是a u x ,的函数。即: d i2 f ( 苫8 d 。j ) 2 吾8 “。- 虬一 6 - 5 善8 u l j 妯- + d l ( 2 6 ) 善a x j b ,+ d i 记:t i = 姜a x j ,则( t j ) 有图2 1 。其中d j ( o ) 是依据不确定参数的变化 特性适当选择的弹性参数。 圈2 1t 的模糊算予 f i g u r e21 :f u z z yn u m b e ro f l i 令:d = d l n d 2 n n d m ,那么,可用d 来代表约束条件1 = 1 a u x j 。当d i = 0 ( i _ 1 ,2 ,m ) 时,d 就退化为普通约束,这时,“兰成为“”。 b xa 。晓h 一叱 卜 o 塑! 奎塑叁兰! 翌:! :堡兰 ! 塑! 竺! 旦一兰型坐竺蔓竺坐型竺! ! ! ! 堕 为了求得目标函数在f 约束下的最优解,需要先将目标函数转化为约束条件, h i j 将c 。s o 转化为c x 三s 。,其中s o 为普通线性规划的最优解,对应上式有f 目 标集( 记为f ) 其隶属函数定义为: f ( x ) = g ( e c x ) = 0 e c x 击( 砉c x ,_ s 0 ) s 。c c x 芦。+ d 0 ( 2 7 ) i e c x s o 十d o 1 巾so + do 是将约束条件的限值b i 改为b i + d i 后的最优值,so 表示决策者的 满意界限。do 表示满意程度的摆动范围。当c x 达不到s0 时认为是不满意的, 当c x 介于so 和so + d0 2 _ m i i , l ,满意程度随c x 的增长而线性地增长,当c x s o + d0 时,认为为是完全满意的,如图2 2 : 幽2 2t o 的模糊数 f i g u r e22 :f u z z y n u m b e r o f f o 图中i o = 妻c x ,为了兼顾f 约束集d 和fh 标集f ,可用b = d r 、f 进行f i 。i 判决,在用最大隶属原则求x ,使得: b ( x )= m a x ( d ( x ) af ( x ) ) = m a x x i d ( x ) ,f ( x ) 九, 0 = m a x 九i d i ( x ) 九,d 。( x ) 九,f ( x ) 九,九0 ) 这时,是求满足d i ( x ) 兰 ( i = 1 ,m ) 和f ( x ) 耋 的 最大值,于 灶产生了一个新的线性规划问题,如式( 2 8 ) 所示。式( 2 8 ) 模型的第二式和 第三式分别由式( 2 4 ) 和式( 2 5 ) 得来,可用单纯形法求解线性规划( 2 6 ) 式。 设所得最优解为x + = ( x l + ,x 2 + ,x 3 + ,x 。) t ,于是有d ( x ) = m a x d ( x ) = r 。 这时x 即为所求的f 条件极大点,即满足f 约束的模糊最优解,从上述过程可 以看f ,模糊规划根据隶属函数的信息,在约束的满意偏差和目标值的满意程度 4 型! 窒塑叁堂塑! :堡苎 ! ! ! ! 竺! ! !鲞丝塑鉴堕里型塑堕! 型堕 之m 棚叭凋,最后确定个模糊约束弹性范闻勾的最优解“。 m a xx i“ s t 1 一( a l x i b ) x o - = ( 2 8 ) ln ( c ,x ;一s o ) 九 九0 x i ,x ”,x 。0 j = 1 , 2 ,m 模糊肌划方法在逃行规划计算之l 讨必须刈+ 各种数据、专家经验和语言规则等 资料进行模糊化处删,对输入输出之川的关系通过模糊舰则来描述“9 1 。文 2 0 2 1 中指出了在电力系统规划中存在着v f 不具有随机性的不确定性因素,采用模糊 集州沦训以对这些刁i 确定性进行处耻,通过对一些文献巾模糊规划方法的论述, 说删了采川模糊集理论米描述和处理电网规划中的刁i 确定性因素,特别是对于长 期f 乜网规划问题而苦比随机方法更加适合于电力系统灵活规划,具有较为广阔应 用河景。文 2 2 采用梯形模糊数对负荷、发电机等不确定性因素建模,然后采用 模糊直流最优潮流模型求得模糊最优潮流解,文中基于风险分析概念定义了暴露 ( e x p o s u r e ) 和鲁棒性( r o b u s t n e s s ) 指标,从而提出了加强网架的策略,同时对模 糊和随机概率方法进行了比较,强调它们适合于不同的不确定性因素和场合。文 2 3 将模糊集理论与传统的动态规划方法相结合,提出了模糊动态规划方法,对 各种因素隶属函数的求取进行了较详细地论述,同时通过灵敏度研究得到了不同 隶属函数对最终结果的影响,通过对算例计算证明该方法是行之有效的。 近年来为了缓解问题求解的难度及确定模糊隶属函数表达式的困难,尝试采 用人工神经网络方法。”,取得了良好的效果。此外,将模糊集理论与专家系统、 决策支持系统结合起来”,以及利用模糊集理论改进传统规划方法的柔性和强壮 性,也被证明是行之有效的“”1 。随着模糊集理论在灵活电力系统规划中进一步 深入研究,并通过与其它不确定性因素处理方法的有机结合,将在灵活规划领域 得到更广泛地应用。 2 1 5 灰色规划( g r a yp r o g r a m m i n g ) 如果把已知称为“白”,把未知称为“黑”,则部分已知部分未知应该称为“灰”, 这就是“狄色”规划名称的由来。灰色规划是研究自然界中另一类不确定现象的 方法。一般来说,灰色系统就主要着重于列此类外延清楚而内涵不明确的问题的 研究。此外,灰色系统也包括那些内涵和外延都不明确的问题1 。 ! :塑窒塑叁堂塑! :堡兰 ! ! ! ! 兰! 旦墨丝竺墨堕坐型苎燮 白1 9 8 2 年华中理_ t 的邓聚龙教授提出灰色系统理论以来,灰色系统理论创 建了一套e i 己的刁i 确定性处理方法,并取得了一定的成功。与模糊规划不同,灰 色胤划足一种定量分析与定性分析相结合的方法。因此,从特点和功能上它可以 分为四种类型,即预测型、灰数漂移型、资源利用型、资源保守型灰色规划。一f 丽以漂移型灰色规划为例来说明其原理和方法。 漂移型灰色规划,是指线性规划模型的系数,包括目标系数c j ,约束值b i , 约束系数a ,均为狄数( 一般特指区问扶数) 时的舰划。若以8 u ,b i ,c j 为白化值 的扶数,分别记为 ( a ,i ) ,o ( b 。) ,o ( c i ) ,灰数的区间分别为 【a 。,i j b ,i l 【c ,i j ,则有下面的线性规划模型: m a x f ( o ( c ) 亍啮) x l + o ( c 2 ) 。2 + ”十o ( 。n ) 。n o ( c j ) 。睦,c j j s t o ( a 1 1 ) x i + o ( a 1 2 ) x 2 + + ( a i n ) x n o ( b 1 ) o ( a 2 1 ) x 1 + o ( a 2 2 ) x 2 + + o ( a 2 n ) x n 蔓o ( b 2 ) ( 2 9 ) o ( a ) 。f + 娶a m 2 ) x 2 + + o ( a m n ) x n ( b m ) o ( b ) = 旺,b 。j 1 o ( 8 n ) = a , j ,a l ij x 0 ,j = 1 , 2 ,n 一个漂移型灰色规划的基本思路是:找出取数非一致情况下,规划值上限及 下限,然后由此决定一个灰靶,即满意区间。在取数一致的情况下对灰系数作漂 移分析,在分析过程中,只要目标函数落入灰靶,就算是找到了灰色规划的满意 解。 为了要得到灰色规划的满意解,预先要规定一个灰靶。若记灰色规划的极限 区域r ,m 。,f 。 ,则记灰色规划的满意区问r 。= f t ,f 。 ,显然有r :cr 。若 取l 、: f ,f s 。) ,或者取r 。的相对值为: r 。= l l ,1 1 p = f f s 。 ( 2 1 0 ) 则称r 。或r 。:为灰色规划的灰靶。一般认为只要落入灰靶的解就是满意解。 其具体求解步骤如下: 1 、给出一个o t 值,t = l ,o a t 1 ; 2 、规定一个狄靶r s 或r 。; 1 6 ! :塑:窒塑叁堂竺! :堡兰 ! ! ! ! ! ! 旦 耋堡竺堕塑里型苎型! ! 塑 3 、计算at 下的l 值 1 、若t ;落入l s 或r 。范围内,算法终止,否则转5 ; 5 、l = 1 + l ,取定新的a ,转3 ; j 中,o 。为狄数变量白化时的摄取系数。 h 前在电力系统灵活规划中对灰色方法已经得到了初步的应用,文c 2 9 提出 了一种灰色多级决策方法,采用灰色负荷信息条件,通过情景分析和层次抽样将 t 。灰包”信息白化处理,从而转化为确定性规划序列,并通过对多级决策规划结 果的g m ( 1 、1 ) 建模分析,得到了f 乜网投资风险较小的网络扩展决策方案,文中将 线性湖流估计技术耵l 灰色系统建模分析方法十h 结合,建立了评价网络方案优劣的 新j 旨标。狄色舰划的优点存r 定量和定性分析川结合,通过列灰色信息的白化获 得刈舰划日标的影i 向信息,在对目标函数进行一定的满意度折衷的情况下获得灰 色满意解。它不象模糊规划会因为隶属函数的定义不同而对舰划结果产生重大的 影响,但其仅仅通过抽样方式研究不确定性特征的坎信息白化方式也存在着不完 把的缺点。因此,它得到的解并不一定有严格的数学意义,而是一个相对满意的 解。这样在解决不确定性方面提供了方便性,但也减少了严格的数学支持。 2 1 6 盲数规划 概率统计、未确知数学、模糊数学和灰色数学的共同特征是上述三种数学工 具只能表达和处理只含一种不确定性的信息。但是,客观上信息的不确定性往往 不是单一的,常常是多种不确定性的混合体。如凡是有行为因素参与同时包含状 念因素的任何体系呈现的信息,至少存在两种上述不确定性【3 0 】。因为行为因素 必导致未确定性,而状态因素将导致随机性、模糊性、狄性或兼而有之。只具有 一种不确定性的信息称为“单式”信息,而任意复杂的信息称为“信息混沌”, 从信息混沌类中分离出一种最多同时具有上述提到的四利t 不确定性的较为复杂 的信息称为“盲信息”。盲数就是用来处理和表达盲信息的数学工具。盲数被定 义为在某区间灰函数上的,取值在 0 ,1 】上的灰函数。具体如下: 定义2 :设g ( i ) 为区间型灰数集,oi g ( i ) ,oi o ,l 】,i = 1 ,2 , 1 1 ,f ( x ) 为定义在g ( i ) 上的灰函数,且 ! 塑竺塑叁= i ! ! 塑! :堕兰 ! ! ! ! 竺! 旦茎羔竖塑型翌坚型苎燮 f0 【,x = a ,( 忙1 , 2 ,n ) f ( x ) :i ( 2 11 ) 1 0 ,其它 私:当i ji i , j ,a 。j ,儿芝o 【= 0 l 1 ,则称函数f ( x ) 为一个盲数。称。为” f f , ju ,值的可信度,称q 为f ( x ) 的总可信度,称n 为f ( x ) 的阶数a 对于盲数的计算有如下定义: 敬+ 表示g ( ,) r 1 1 的一利运算,如:+ 、一、等巾的一种。 设盲数a 、b 为: f a ,x = x 。( j = 1 , 2 ,n ) a = f ( x ) : ( 2 1 2 ) 1 0 ,其它 ,y = y 。( 1 = 1 , 2 ,n ) b = g ( y ) = ( 2 1 3 ) 1 0 ,其它 定义3 :表l 称为a 关于b 的可能值带边+ 矩阵。互相垂直的两条直线叫纵 轴和横轴。第一象限元素构成的m * n 阶矩阵称为a 关于b 在+ 运算下的可能值+ 矩阵。 表1a 关于b 的可能值带边+ 矩阵 t a b l elt h e m a t r i xo f o p e r a t o r “”o f p o s s i b l ev a l u e s x lx l + y lx l + y jx 1 + y n : x ix 1 + y i x 1 + y jx l l + y n : x mx m + y l x m + y j x m + y n y l y j y n 定义4 :表2 称为a 关于b 的可信度带边积矩阼。第一象限元素构成的m + r l 阶矩阵称为a 关于b 的可信度积矩阵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论