(通用版)2020版高考数学大二轮复习专题突破练8应用导数求参数的值或范围理.docx_第1页
(通用版)2020版高考数学大二轮复习专题突破练8应用导数求参数的值或范围理.docx_第2页
(通用版)2020版高考数学大二轮复习专题突破练8应用导数求参数的值或范围理.docx_第3页
(通用版)2020版高考数学大二轮复习专题突破练8应用导数求参数的值或范围理.docx_第4页
(通用版)2020版高考数学大二轮复习专题突破练8应用导数求参数的值或范围理.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题突破练8应用导数求参数的值或范围1.(2019北京顺义统考二,文18)设函数f(x)=ax-ln x,aR.(1)若点(1,1)在曲线y=f(x)上,求在该点处曲线的切线方程;(2)若f(x)有极小值2,求a.2.(2019山东潍坊二模,文21)已知函数f(x)=xex-aln x(无理数e=2.718).(1)若f(x)在(0,1)单调递减,求实数a的取值范围;(2)当a=-1时,设g(x)=x(f(x)-xex)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.3.设函数f(x)=emx+x2-mx.(1)证明:f(x)在(-,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x2-1,1,都有|f(x1)-f(x2)|e-1,求m的取值范围.4.(2019湘赣十四校联考二,理21)已知函数f(x)=(ax-1)ex+a.(1)若f(x)f(0)恒成立,求f(x)在(1,f(1)处的切线方程;(2)若f(x)ax有且只有两个整数解,求a的取值范围.5.(2019四川第二次诊断,理21)已知f(x)=xln x.(1)求f(x)的极值;(2)若f(x)-axx=0有两个不同解,求实数a的取值范围.6.(2019山东德州一模,理21,文21)已知函数f(x)=e2x-3-(2x-3)2.(1)证明:当x32时,f(x)1;(2)设g(x)=14+lnx2,若存在实数x1,x2,使得f(x1)+(2x1-3)2=g(x2),求x2-x1的最小值.参考答案专题突破练8应用导数求参数的值或范围1.解(1)因为点(1,1)在曲线y=f(x)上,所以a=1,f(x)=x-lnx.又f(x)=x2x-1x=x-22x,所以f(1)=-12.在该点处曲线的切线方程为y-1=-12(x-1),即x+2y-3=0.(2)f(x)的定义域为(0,+),f(x)=ax2x-1x=ax-22x.讨论:当a0时,f(x)0时,令f(x)=0可得x=4a2,当x发生变化时,f(x),f(x)的变化情况如下表:x0,4a24a24a2,+f(x)-0+f(x)单调递减极小值单调递增所以f(x)在0,4a2上单调递减,在4a2,+上单调递增,所以f(x)极小值=f4a2=2-ln4a2,所以2-ln4a2=2,解得a=2(负值舍去).2.解(1)f(x)=(x+1)ex-ax=(x2+x)ex-ax.由题意可得f(x)0,x(0,1)恒成立.即(x2+x)ex-a0,也就是a(x2+x)ex在x(0,1)恒成立.设h(x)=(x2+x)ex,则h(x)=(x2+3x+1)ex.当x(0,1)时,x2+3x+10,h(x)0在x(0,1)单调递增.即h(x)h(1)=2e.故a2e.(2)当a=-1时,f(x)=xex+lnx.g(x)=xlnx-x3+x2-b,由题意得问题等价于方程b=xlnx-x3+x2,在(0,+)上有解.先证明lnxx-1.设u(x)=lnx-x+1,x(0,+),则u(x)=1x-1=1-xx.可得当x=1时,函数u(x)取得极大值,u(x)u(1)=0.因此lnxx-1,所以b=xlnx-x3+x2x(x-1)-x3+x2=-x(x2-2x+1)0.当x=1时,取等号.故实数b的最大值为0.3.解(1)f(x)=m(emx-1)+2x.若m0,则当x(-,0)时,emx-10,f(x)0.若m0,f(x)0;当x(0,+)时,emx-10.所以,f(x)在(-,0)单调递减,在(0,+)单调递增.(2)由(1)知,对任意的m,f(x)在-1,0单调递减,在0,1单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2-1,1,|f(x1)-f(x2)|e-1的充要条件是f(1)-f(0)e-1,f(-1)-f(0)e-1,即em-me-1,e-m+me-1.设函数g(t)=et-t-e+1,则g(t)=et-1.当t0时,g(t)0时,g(t)0.故g(t)在(-,0)单调递减,在(0,+)单调递增.又g(1)=0,g(-1)=e-1+2-e1时,由g(t)的单调性,g(m)0,即em-me-1;当m0,即e-m+me-1.综上,m的取值范围是-1,1.4.解(1)f(x)=(ax-1)ex+a,f(x)=(ax-1+a)ex.f(x)f(0)恒成立,f(0)=a-1=0,a=1.当a=1时,f(x)=xex,f(x)在(-,0)上单调递减,在(0,+)上单调递增.f(x)f(0)恒成立,a=1符合题意.f(x)=(x-1)ex+1,f(x)=xex,故f(1)=1,f(1)=e,f(x)在(1,f(1)处的切线方程为y-1=e(x-1),即y=ex-e+1.(2)f(x)=(ax-1)ex+aax,化简即a(xex-x+1)0时,xex-x+10,a(xex-x+1)0ex恒成立,此时f(x)=(ax-1)ex+a0时,原不等式可化为1ax-xex+1ex.令h(x)=x-xex+1ex.h(x)=ex+x-2ex,令(x)=ex+x-2,(x)=ex+1,(x)在R上单调递增.又(0)=-10,存在唯一x0(0,1),使得(x0)=0.h(x)在(-,x0)上单调递减,在(x0,+)上单调递增,且x0(0,1).又h(0)=1,h(1)=1,h(-1)=2e-1,h(2)=2-1e2,当原不等式有且只有两个整数解时,11a2-1e2,即e22e2-1a0,解得x1e.令f(x)0,解得0x0,解得0t1.令g(t)1.故g(t)在(0,1)递增,在(1,+)内递减,故g(t)max=g(1)=1e.由t=xlnx,t-1e,a=g(t)=tet的图象和性质有:0a1e,y=a和g(t)有两个不同交点(t1,a),(t2,a),且0t11t2,t1=xlnx,t2=xlnx各有一解,即f(x)-axx=0有2个不同解.-e1-eea0,y=a和g(t)=tet仅有1个交点(t3,a),且-1et30.所以u(t)在0,+)内为增函数,所以u(t)u(0)=0.即当x32时,f(x)1.(2)设f(x1)+(2x1-3)2=g(x2)=m,则e2x1-3=14+lnx22=m.因为x1R,所以e2x1-30,即m0,所以2x1-3=lnm,lnx22=m-14,所以x1=lnm+32,x2=2em-14,x2-x1=2em-14-lnm+32(m0).令h(x)=2ex-14-lnx+32(x0),则h(x)=2ex-14-12x,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论