(机械电子工程专业论文)电液伺服振动试验台的动态补偿.pdf_第1页
(机械电子工程专业论文)电液伺服振动试验台的动态补偿.pdf_第2页
(机械电子工程专业论文)电液伺服振动试验台的动态补偿.pdf_第3页
(机械电子工程专业论文)电液伺服振动试验台的动态补偿.pdf_第4页
(机械电子工程专业论文)电液伺服振动试验台的动态补偿.pdf_第5页
已阅读5页,还剩99页未读 继续免费阅读

(机械电子工程专业论文)电液伺服振动试验台的动态补偿.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

太原理工大学硕士研究生学位论文 y 7 8 8 3 7 磊 电液伺服振动试验台的动态补偿 摘要 动态补偿技术是对不满足静动态特性要求的系统,采取 一些特殊的计算处理方法或增加一个补偿环节的办法,达到 提高系统总体性能的目的。本文研究的重点集中在动态特性 补偿技术上,即采取增加补偿环节的办法对电液位置伺服控 制系统的总体特性进行改进。这种方法对改善电液伺服系统 的总体性能,特别是动态特性具有实用价值。 本文首先对电液位置伺服振动试验台的系统进行理论 分析,建立系统的理论模型,并根据根轨迹法和频率响应法, 分别设计了基于理论模型的校正环节,进行了对所设计校正 环节的仿真研究,结果表明,加上校正环节的液压伺服位置 控制系统具有较好的动态性能;其次利用1 2 5 0 频率特性测 试仪所测的实际数据辨识出液压伺服位置系统被控对象的 实验模型,把根据理论模型设计出的校正环节串入实际系统 中,进行实验验证,结果表明:所设计的液压伺服位置控制 太原理工大学硕士研究生学位论文 系统的动态性能得到了显著的改善,证明了所设计校正环节 的可行性。最后,通过对两种补偿方法性能的比较可知,用 频率响应法补偿更能改善振动台控制系统的动态性能。 关键词:动态补偿,电液位置伺服控制,频率响应法,根 轨迹法 j j 太原理工大学硕士研究生学位论文 t h ed y n a m i cc 0 巴e n s a t l 0 n0 f t h ee l e c t r o h y d r a u l i c s e r v ot e s t - b e d a b s t r a c t d y n 锄i cc o m p e n s a t i o nt e c h n o l o g yi st ota :k es o m es p e c i a l c o m p u t i n gm e t h o d s 0 ri n c r e a s e c o m p e n s a t i n g l i n kt ot h e s y s t e m w h i c hi su n s a t i s f i e dw i t l lt 1 1 e s t a 廿o n a r y d y n a m i c p r 叩e r t i e ss oa st oa c h i e v et l l eg o a lo fi m p r o v i n gt i l es y s t e m o v e m l lp e r f 细1 a n c e t h ef o c a l p o i mo f 协i s r e s e a r c hi s c o n c e n t r a t e do nt h ed y n a m i cp r o p 硎e sc o m p e n s a t - m g t h i s k 血d o fm e m o dh a sp r a c t i c a lv a l u et oi m p r o v et h eo v e r a l l p e r f b n n a n c eo fm ee l e c t r o - h y d m u l i cl i q u i d s e r v o s y s t e m , e s p e c i a l l yi t sd y n a m i cp 啪p e n i e s t l l i s p a p e r f i r s t l y d o也e o r 以c a l a n a l y s e s t o i i i 太原理上大学硕士研究生学位论文 k e yw o r d s :d y n a m i cc o m p e n s a t i o n ,e l e c 订i c _ h y d r a l i c p o s i t i o nc o n t r 0 1w h j l eb e i n gs e r v o ,疔e q u e n c y r e s p o n d st h el a w ,o r b i tl a wo f t h er o o t v 太原理工大学硕士研究生学位论文 第一章绪论 1 1 课题的研究意义和背景 电液伺服系统在各工业部门获褥广泛的应用,从柔性加工系统中 加工机械伺服系统、飞机和舰船操纵系统、大型雷达天线伺服跟踪系 统到各类电液控制的试验机系统( 如疲劳试验机、结构试验机、电液 振动台、电液激振器和冲击试验机等) 都广泛采用电液伺服控制系统。 近代电液伺服系统由于具有响应快、功率大、精度高、尺寸小以及抗 负载刚性大等特点而迅速发展起来,已经开始从传统的机械、操纵和 助力器等应用场合向航空航天、海底作业、车辆等领域内扩展- 液压伺 服系统的经典控制理论5 0 年代初由麻省理工学院开始研究,到6 0 年 代初构成了其基本类型。经典控制理论采用基于工作点附近的增量线 性化模型来对系统进行分析和综合,设计过程主要在频域内进行,控 制器的主要形式为滞后、超前网络和p i d 控制等。目前,电液伺服系 统的经典控制理论已经成熟,对一些频宽不太高、参数变化和外干扰 不太大的系统,采用经典方法进行设计已能满足工程需要。但是,随 着机械工作精度、响应速度和自动化程度的提高,对电液伺服系统的 控制也提出了越来越高的要求,于是国内外许多学者将各种控制策略 用于电液伺服系统,进行了许多有益的尝试和研究。因此,电液伺服 系统,特别是带各类机械负载的电液伺服系统的设计成为人们十分关 注的问题。这些系统性能的优劣首先是由设计决定的,而这类控制系 太原理工火学硕士研究生学位论文 统精确数学模型的建立又是设计过程中( 特别是控制器或均衡器设 计) 的关键环节。因此,这类问题的研究是具有十分重要的理论和工 程应用价值的重要课题。 电液伺服系统以及测量系统的频响范围总是有限的,特别是电液 伺服系统的动态特性往往是限制整个系统频响的主要环节。这时必须 求助于动态补偿技术,对电液伺服系统的各种“缺陷”进行“修补”, 使电液伺服系统的动态性能在原有的基础上,进一步得到改进,减小 测量的动态误差。 动态补偿技术的含义是:对不满足静动态特性要求的系统,采取 一些特殊的计算处理方法或增加一个补偿环节的办法,达到提高系统 总的特性的目的。对于连续信号的测试系统,可以设计成采用集成运 算放大器的补偿模拟滤波器,与原测试系统的放大器串联起来或更进 一步可把它们集成在一个单片机内,对于集成传感器来说,动态补偿 滤波器可与传感器集成在一起。对于带有计算机或单片机的测试系 统,可以采用动态补偿数字滤波器,将数字滤波器的程序装在微处理 器或计算机中即可,可以进行实时动态补偿也可以进行测试结束后的 数据处理。数字补偿数字滤波器具有以下特点:( 1 ) 不须增加硬件设备, 尤其是在多通道测试系统中,可共用滤波子程序,从而大大降低了费 用和成本;( 2 ) 可靠性高,可重复性好;( 3 ) 不必考虑阻抗匹配的问题 等,在科学研究中获得了大量的应用。 动态补偿技术是从二十世纪六、七十年代以来迅速发展起来的, 当时由于核技术和宇宙工业上出现了大量的瞬变信号急需测量。这些 瞬变信号变化非常快,以致当时找不到适当的仪器去测量,因而各种 太原理工大学硕士研究生学位论文 动态补偿技术也就应运而生,弥补了仪器方面的不足。但发展这类技 术的意义并不限于消极的补救作用,而是给测试系统的设计提出了一 些新的观点和思想,因而获得了迅速的发展。 在发展的初期,往往是以阶跃响应或脉冲响应为基础,由输出按 一定的计算关系直接求出输入端的信号,阻达到减小测试系统动态误 差的目的,这种方法也称为动态误差修正。目前在有些情况下仍在使 用,且效果很好。常见的动态误差修正方法有数值微分法、叠加积分 法、频率域修正法和反卷积法等。数值微分法根据描述系统输入( 被 测信号) 和输出( 测量结果) 之间的微分方程,由测量结果恢复出被测信 号。这种方法基于系统准确可靠的微分方程,在计算中采用大量数值 微分,故要保证足够的计算精度,计算量很大。叠加积分法把被测信 号看成许多阶跃信号叠加,而把测量结果看成这些阶跃信号的响应, 从而导出由测量结果恢复被测信号的数学关系。这种方法不用建立测 量系统的动态数学模型,但计算量也比较大。频率域修正法由测试系 统的频率特性和测试结果信号的频谱求出被测信号的频谱,再利用傅 立叶反变换得到被测信号的估计值。该方法在求测试系统频率特性 时,会遇到混迭误差、泄漏误差及栅栏效应的影响,并由于在全频率 范围内计算输入信号,使得计算结果易受高频噪声的影响。在理论上, 频率域修正法相当于具有动态误差的输出信号经过补偿环节,使被补 偿后的等效系统成为理想系统,而使输入信号得到了无失真的传输。 实际中这种方法能否成功应用的前提除了频率特性和测试结果信号 的频谱的计算要十分准确外,还要求测试系统的噪声可忽略不计。而 实际的测量信号中不可避免地含有测量噪声,它通过补偿滤波器后, 太原理工大学硕士研究生学位论文 1 2 本文的主要研究内容 机电液伺服控制系统是由电液伺服阀、执行器( 液压缸或液压马 达) 、控制器、测量反馈装置以及各类机械负载组成的闭环控制系统, 它可以接受各种控制信号( 输入) ,使工作机构( 作动器) 在空载的情况 下按预定的控制规律运动。本课题主要研究电液伺服控制系统的动态 补偿。 第二章简要的介绍电液伺服控制系统的基本理论知识及几种系 统补偿的校正装置。 在控制系统中加入校正装置是为了获得满意的瞬态响应特性。本 章首先介绍根轨迹法和频率响应法中的伯德图法,以及它们的超前校 正、滞后校正、滞后一超前校正和它们之间的比较。 第三章对电液控制系统进行了理论建模 对于数学模型的确定,本章中首先对电液控制系统的转换元件、 执行元件和作动器分别进行特性研究并建模,并对其模型进行理论分 析,得出系统的数学模型。 第四章得出电液伺服控制系统的实验模型 上章我们已确定系统的数学模型,为了实际应用的需要,本章采 用1 2 5 0 频率测试仪对其模型进行实际测试,根据多次试验所得出的 系统频率特性曲线并结合模型的数学分析,得出控制对象的实验模 型。 第五章主要将系统补偿方法运用于电液伺服振动台控制系统,进 行控制系统的设计和校正。 太原理工大学硕士研究生学位论文 本章研究电液振动台的控制规律,对本项目的控制系统进行性能 分析,并设计系统的校正装置。 根据第三、四章得到电液伺服控制系统数学模型和实验模型的基 础上,利用第二章中介绍的系统补偿方法,设计基于根轨迹法和频率 响应法的校正装置,进行仿真研究和实验检验,证明了基于频率响应 法设计的校正装置更有效。 太原理工大学硕士研究生学位论文 第二章电液伺服控制系统 电液伺服控制系统是由电气的信号处理部分与液压的功率输出 各种物理量的闭环控制系统。电液伺服控制系统综合了电气和液压两 方面的优点,具有控制精度高、响应速度快、信号处理灵活、输出功 率大、结构紧凑、重量轻等优点。因此其应用极为广泛,几乎在各个 1 j 臻净哺喳堤n 驰竖: ? ! 嗡薹氢蚕鍪夔羲羹割萋鍪菱篓錾霎髦 誊型引鼎型曩鞫基萝拟甍糍使;哥更薛6 j 茈札f 匍耗雨;璐丽一 使有很小的噪卑疆鐾耋耸堡。 j ;二| 答霞掣坦会使所得结果严 l 。蠼墨毋箔疆墨砸丞凼塑鐾辨型瑟唆;登副霞黧罂邕蟊i 毒雹 蚕掣晶罂套;盈螺掣显辱錾岌掣链露笛; ;暇伺腮系统的劫纛糕桩鞯崭品输锄捌诺聋【i j j 澎,漆尚漆邂离凄 睫淄;薄得到的模型为依据,设计出一种动态补偿滤波器,与原来的 电液伺服 系统相串联,使级联补偿器后系统的总的动态性髓满足使用要求。它 与动态误差修正技术的目的都是为了提高测试精度减小动态误差,但 两者侧重点不同:它强调提高系统的工作频带和响应速度,采取级联 补偿环节的办法对动态特性进行改进。由于大多数的测试系统带有计 算机,可设计动态补偿数字滤波器,进行软件补偿,该方法经济、灵 太原理工大学硕士研究生学位论文 2 2 电液位置伺服控制系统 2 2 1 系统的基本结构 图2 2电液伺服控制系统的基本结构 f 嘧2 - 2 b a s i cs 廿u 曲j r eo f t l l es e r v oc o n t r o s y s t e mo f t l ee l e c t r 0 小y d r a u i c 2 2 2 系统的剖霪幕 豢强 藁l i 羹磐f 矗若弘囊到垫塑婴 藿i 睾j 鼍薹誊:;i 参;莲爱誉箜? l 墓三! 耋譬二! i 三j l ! 喜皋i 享三誊掣电液伺服控制系统的基本元件 f i昏2 一l p r i m a r ye l e i n o n io f c h es e r v dc o n 乜0 l s y s te mo f t l l ee l e c 廿d _ h y d r a u l i c 1 指令元件:给出与反馈信号同样形式的控制信号,可咀是电 位器、计算机等。 太原理工大学硕士研究生学位论文 2 2 电液位置伺服控制系统 2 2 1 系统的基本结构 图2 2电液伺服控制系统的基本结构 f 嘧2 - 2 b a s i cs 廿u 曲j r eo f t l l es e r v oc o n t r o s y s t e mo f t l ee l e c t r 0 小y d r a u i c 2 2 2 系统的方框图 图中 国2 3 电液位置伺服系统方块图 f i g 2 - 3b 1 0 c k - d i a g r a | 1 1o f t l l es e r v oc o n t r 0 1 s y s t e mo f t l l ee l e c n d _ h y d r a u l i c “输入指令( 矿) ; 磊伺服系统的液压阻尼比,无因次; 量,反馈电位器增益( y m ) 9 太原理工大学硕士研究生学位论文 k 。一伺服放大器增益( 爿y ) m 。线圈转折频率( r 耐b ) ; k 。电液伺服阀流量增益( 州3 彳j ) ; m 。电液伺服阀固有频率( m d j ) 电液伺服阀阻尼比,无因次 彳液压缸油腔有效工作面积( 历2 ) 删2 鬻潮 1 ) 系统的的性能由参数、巩和瓦。所决定。当改变这些参数仍不 太原理工大学硕士研究生学位论文 使用反馈控制与前馈补偿( 前馈控制) ,这就构成了复合控制系统。 液压伺服系统的阻尼比艿。通常比较小,使得增益裕量不足,而相 位裕量有余。系统的稳定性和响应速度主要受增益裕量的限制。提高 阻尼比以可使增益裕量增加,而相位裕量减小,以满足增益裕量和相 位裕量的要求。另外点是坑值易于变化,模糊不清。在系统补偿时, 应注意这两个特点。 为了使系统获得满意的性能,对系统进行调整时,首先应调整增 益值。但是,在大多数实际情况中,只调整增益并不能使系统的性能 得到充分地改变,以满足给定的性能指标。芷如通常的情况那样,随 着增益值的增大,系统的稳态性能得到改善,但是稳定性却随之变坏, 甚至有可能造成系统不稳定。因此,需要对系统进行再设计( 通过改 变系统结构,或在系统中加进附加的装置或元件) ,以改变系统的总 体性能,使系统的性能满足要求。这种再设计,即往系统中加进适当 的装置,称为校正。为了满足性能指标而加迸系统的装置,称为校正 装置。校正装置补偿了原系统的性能缺陷。 2 3 控制系统校正的根轨迹法 闭环系统瞬间响应的基本特性与闭环极点的位置紧密相关。如果 系统具有可变的环路增益,则闭环极点的位置取决于所选择的环路增 益值。闭环极点就是特征方程的根。求三阶以上的特征方程的根,是 很麻烦的,它将需要借助于计算机求解。但是,求出的特征方程的根 可能是有限的值。因为当开环传递函数的增益变化时,特征方程也在 太原理工大学硕士研究生学位论文 变化,因此这种计算必须重复进行。 w r 伊凡思( e v a n s ) 研究出一种求解特征方程根的简单方法, 它在控制工程中获得了广泛的应用,这种方法叫做根轨迹法, 根轨迹法是一种图解法,它是当系统的某一参数( 通常为增益) 从零变到无穷大时,根据开环极点和零点的位置信息确定全部闭环极 点位置的方法。这种方法清楚地表明了参数变化的影响。 根轨迹法的基本概念是使开环传递函数等于1 的s 值必须满足系 统的特征方程。在设计线性控制系统时,根轨迹法是相当有用的,因 为它指出了开环极点和零点应当怎样变化,才能使系统的响应满足系 统的性能指标。该方法特别适合于迅速地获得近似结果。 利用根轨迹法,可以确定环路增益k 的值,从而使闭环主导极点 的阻尼比达到规定的值。如果开环极点或零点的位置是系统变量,则 根轨迹法可以提供选择开环极点或零点位置的方法。 在实际中,系统的根轨迹图表明,只调整增益不能获得所希望的 性能。事实上,在某些情况下,对于所有的增益值,系统可能都不是 稳定的。因此,必须改造根轨迹,使其满足性能指标。 2 3 1 超前校正 图2 4 控制系统 f i g 2 4 c o n 廿0 ls y s t e m 1 2 太原理上大学硕士研究生学位论文 正装置的极点和零点,重复上述过程,直到所有的性能指标得到满足 时为止。如果需要大的静态误差常数,则应串联一个滞后网络,或者 将超前校正装置改变成滞后超前校正装置。 如果被选择的主导闭环极点不是真正的主导极点,则需要改变此 主导闭环极点的位置( 主导极点以外的一些闭环极点改变了由主导闭 坏极点单独作用而获得的响应。变化的大小取决于闭环极点的位置) 。 2 3 2 滞后校正 用根轨迹法为图2 4 所示的系统设计滞后校正装置的步骤如下 ( 假设通过简单的增益调整,可以使未校正系统满足瞬态响应指标; 如果不是这种情况,请参考滞后一超前2 3 3 ) : 1 设未校正系统的开环传递函数为g ( j ) ,画出未校正系统的根轨 迹图。根据瞬态响应指标,确定主导闭环极点在根轨迹上的位置。 2 假设滞后校正装置的传递函数为: 。上1 g 。g ) 咄萧毯寻,p l 鼠 于是已校正系统的开环传递函数为g c g ) g g ) 。 3 计算指定的具体静态误差常数。 4 确定为了满足性能指标丽需要增加的静态误差常数值。 5 确定滞后校正装置的极点和零点,该滞后校正装置能够使特定 的静态误差常数产生必要的增量,同时又不会使原来的根轨迹产生明 显的变化( 性能指标要求的增益值与未校正系统中求出的增益值之 太原理工大学硕士研究生学位论文 比,就是零点到原点的距离与极点到原点的距离之间所要求的比值) 。 6 画出校正系统的新根轨迹图。在根轨迹上确定要求的主导闭环 极点( 如果滞后网络产生的辐角很小,只有几度,原根轨迹和新根轨 迹将几乎相同。换句话说,它们之间将存在微小的差别) 。然后,根 据瞬态响应指标,在新的根轨迹上确定希望的主导闭环极点。 7 根据幅值条件,调整校正装置的增益k ,使主导闭环极点落 在希望的位置上。 2 3 3 滞后一超前校正 超前校正的作用是使响应加快,使系统的稳定性增加。滞后校正 的作用是改善系统的稳态精确度,但将减慢响应速度。 如果要同时改善瞬态响应和稳态响应,可能需要同时采用超前校 正装置和滞后校正装置。当然,比较经济的方法是采用单一滞后一超 前校正装置,而不是把超前校正装置和滞后校正装置作为分离元件而 同时引进系统。 滞后超前校正综合了滞后和超前校正两者的优点。因为滞后一超 前校正器具有两个极点和两个零点,所以如果在校正系统中没有发生 极点和零点相消,采用这种校正方法后,会使系统的阶次增大两阶。 考虑图2 4 所示的系统。假设采用下列滞后超前校正装置: 删毡等苦筠哦 卜砉) ( s + 小去 ( 2 2 ) 式中 1 和, 1 ( 假设k 。属于滞后一超前校正装置的超前部 1 5 太原理工大学硕士研究生学位论文 近似等于1 ,式中式中s = j 。是主导闭环极点之一。由下列幅值和 辐角条件,确定互和的值: i s ,+ 一 弓g g s + l 5 利用确定的卢僮选择正,使得 1 1 s “卑州 5 。 么二兰一 o 。 ”两 滞后一超前校正装置的最大时间常数卢正不应该太大,否则在物理 上将难以实现。 2 4 控制系统校正的频率晌应法 系统对正弦输入信号的稳态响应,称为频率响应。在频率响应方 立畔 太原理工大学硕士研究生学位论文 率响应实验确定。当采用伯德图方法时,由实验得到的频率响应图可 以容易地与其他频率图综合。在涉及到高频噪声时,我们发现频率响 应法比其他方法更方便。 在频域设计中,基本上有两种方法,一种是极坐标法,另外一种 是伯德图法。当需要加校正装置时,极坐标图就不再保持其原来的形 状,鏊翼一| | | | - 童薹鏊鎏i 爹蚕譬晌划;霉基曼耋妻;囊j 。纂二 蔓毒冀霉1 1 蛰学赶斗冀辨斟爿蓉辅葡彰帮降搦;蔺淄涝毫篱g j 囊弛艘彭峨_ 广垫蒸臻强穗播:鸶壤:嘿蕊燃稀鳓葱盥盔j 臻珲逡撼翼 爱曙篡翥蓟:鐾嚣巍冀弱冀薹蠢蚕;冀霞嚣尊赢稍海谭瞬;国瓣;惹 稽军秃翅丽符? 萝塞餐苒鲁耆疆型强: 鸳骐警蝰誉蠡彗蔡嚣其召篆罂c 老锻谚弱辎靶匀簧勤;绑娟爨魏 塑到鱼掣燕嬲囊;攫堕焉蔓羹薹誉冀 x 太原理工大学硕士研究生学位论文 的零点与未校正开环传递函数的极点之间产生了抵消) ,这意味着系 统将变得更加复杂,并且对其瞬态响应特性的控制更加困难。需要采 用的校正型式,取决于具体的情况。 2 4 1 超前校正 2 a 1 1 超前校正装置的特性 考虑一个超前校正装置,它具有下列传递函数 酗筹毯冬, t i m 。 弋 徐。 o 口 1 乏 一扣一 图2 5 超前校正装置a o 卯r + 1 ) ( ,脚口r + 1 ) 的极坐标图,其中o 口 1 f j g 2 - 5 p o l a rd i a g 删1 1o f c o 它c tt h ed e v i c el e a d i n g l y 它的零点位于s = 一l 旧,极点位于j = 一l 旧) 。因为o 口 1 , 所以在复平面上,零点总是位于极点的右方。当口的值很小时,极点 将位于极点左方很远的地方。口的最小值受到超前校正装置物理结构 的限制,通常取为o 0 5 左右( 这意味着超前校正装置可以产生的最大 太原理工大学硕士研究生学位论文 相位超前大约为6 5 。) 。 图2 5 画出了下列传递函数的极坐标图: 臣盘! 堕! o 口 1 。 ,国口丁+ 1 。 图2 5 是在足,= 1 的条件下画出的。对于给定的口值,正实轴与 从零点到半圆所作切线之间的夹角,给出了最大相位超前角庐。设切 点薰鲤鹭霭疆。嬖蛙? 一l 篙受羹攀,肇* 垂:篓琵砌瞧疆遵:盔泡 ;鞲 彝荣一羹;蠢 霎 器 i c e 2 4 2 2 滞后校正方法 滞后校正的主要作用是在高频段造成衰减,从而使系统获得足够 的相位裕量。相位滞后特性在滞后校正中不重要。 用频率响应法为图2 4 所示的系统设计滞后校正装置的步骤如 太原理工大学硕士研究生学位论文 k1 8 = k十是g 。o ) = 世蒜已校正系统的开环传递函数为: q 麟“可羹藿篓f 。鬻麓篓! 一鬻垂;囊孝i j 螽i | | 囊主i 季二霉苌垂i 斑豌重毒i ! 善蕊冀鋈鬻翳爨群霸。 i ? 薛眨圳到乐薹副妻f 妻! = i 耄蒋肇i 翰墨要割瞍帮窦单翼伛熟鄱 分截j蘸硬黪塑一鞋蛆琶j强捡篙蒜,蒂蠢瞢鬲车枣耗南痞改蛮 一;gg。溶嚆碥澜缓瓣绋i茜黪412超前校正方法超前校正 装置的主要作用是改变频率响应曲线的形状,产生足够大的相位 超前角,以补偿原系统中的元件造成的过大的相角滞后。考虑图2 4 所示的系统。假设性能指标是以相位裕量、增益裕量、静态速度 误差常数等形式给出的。利用频率响应法设计超前校正装置的步骤描 述如下:1 ,假设 有下列超前校正装置:啪凇。口 朵毯冬, 定义 太原理工大学硕士研究生学位论文 k1 8 = k 十是 g 。o ) = 世蒜 已校正系统的开环传递函数为: q 麟“可羹藿篓f 。鬻麓篓! 一鬻垂; 囊孝 i j 螽i | | 囊主i 季二霉苌垂i 斑豌重毒i ! 善蕊冀鋈鬻翳爨群霸。 i ? 薛眨圳到乐薹副妻f 妻! = i 耄蒋肇i 翰墨要割瞍帮窦单翼伛熟鄱 分截j 蘸硬黪塑一鞋蛆琶 j 强捡篙蒜,蒂蠢瞢鬲车枣耗南痞改蛮 一;g g 。溶嚆碥澜缓瓣绋i 茜黪4 1 2 超前校正方法 超前校正装置的主要作用是改变频率响应曲线的形状,产生足够 大的相位超前角,以补偿原系统中的元件造成的过大的相角滞后。 考虑图24 所示的系统。假设性能指标是以相位裕量、增益裕量、 静态速度误差常数等形式给出的。利用频率响应法设计超前校正装置 的步骤描述如下: 1 ,假设有下列超前校正装置: 啪凇。口 朵毯冬, 定义 太原理工大学硕士研究生学位论文 衰减量。这一衰减量等于一2 0 l o g ,从而可以确定值。另一个转 角频率( 相应于滞后校正装置的极点) 可以由d = l ( ) 确定。 5 利用在第一步中确定的彤值和在第四步中确定的卢值,根据 下式计算常数k ,: k :墨 。 9 2 4 - 2 3 关于滞后校正的一些说明 1 滞后校正装置实质上是一种低通滤波器。因此,滞后校正使低 频信号具有较高的增益( 改善了稳态增益) ,而同时降低了较高临界 频率范围内的增益,因而改善了相位裕量。在滞后校正中,我们利用 的是滞后校正装置在高频段的衰减特性,丽不是其相位滞后特性( 相 位滞后特性不能用来达到校正目的) 。 2 假设滞后校正装置的零点和极点分别位于j = 一z 和s = 一p 。如 果零点和极点都靠近原点,并且比值z p 等于要求的静态速度误差常 数的乘子,则零点和极点的精确位置不重要。 当然,滞后校正装置的零点和极点不应该无故地靠近原点,因为 那样会在滞后校正装置的零、极点区域内产生附加的闭环极点。 位置靠近原点的闭环极点将产生非常缓慢的衰减瞬态响应,尽管 由于滞后校正装置的零点几乎与此极点的作用相抵消,而使得瞬态响 应的幅值变得很小。不管怎样,由于这个极点的作用,还是会使瞬态 响应( 衰减) 缓慢,对调整时间造成不利的影响。 太原理工大学硕士研究生学位论文 在用滞后校正装置校正过的系统中,控制对象的扰动量与系统误 差之间的传递函数可能不包含靠近该极点的零点。因此,系统对扰动 输入量的瞬态响应可能延续很长时间。 3 由于滞后校正装置的衰减作用,使增益交界频率向低频点移 动,从而使相位裕量满足要求。但是,滞后校正装置将降低系统的带 宽,并且导致比较缓慢的瞬态响应( g 。o ) g ( ,甜) 的相角曲线在新的 增益交界频率附近基本上保持不变) 。 4 因为滞后校正装置对输入信号有积分效应,所以其作用近似于 一个比例一加一积分控制器。因此,滞后校正装置具有降低稳定性的倾 向。为了防止这种不希望的性能,滞后校正装置的时间常数丁应当比 系统的最大时间常数大。 m ( j 耐,j 1 图2 9 条件稳定系统的伯德图 f 嘻2 9 b o d ed i a 掣珊no f s t a b l es y s t e | no f 铂ec o n d 谢0 n 太原理工大学硕士研究生学位论文 i 耐 弋 v 一 o ,1 ;r j 。2 l 珊:o 图2 1o 当k 。= l 和y = 时,滞后超前校正装置的板坐标图 f i 晷2 一1 0 p o l a rd i a g r a mo f l a gb e h i n d - c o n c t 也ed e v i c el e a d i n 舀y 功( ,耐s ) 图2 一当e = 1 ,y = = 1 0 和互= 1 0 墨时 滞后一超前校正装置的伯德图 f 嘻2 - 1 1b o d e d i a g r 锄o f i a g b e h i n d c o r i c t t h ed e 、r i c e l e a d i n g l y 须的,也可以选择y ) 。下面讨论y = 的情况。当疋= 1 和,= 时,滞后超前校正装置的极坐标图如图2 1 0 所示。由图可以看出 3 2 太原理工大学硕士研究生学位论文 当o ( m ( 珊时,该校正装置作为一个滞后校正装置;当( ( o 。时 啪心。端= 疋艄弦, 太原理工大学硕士研究生学位论文 校正,可能得不到满意的结果。因此,必须采用具有不同极一零点配 置的各种不同的校正装置。 7 在实际的设计问题中,校正装置的设计必须满足一些附加的设 计约束,如成本、尺寸、重量和可靠性等。另外,还要考虑到环境和 系统老化的影响。 2 。5 本章小结 为了便于以后各章节的理解和阐述,本章简要介绍了有关电液位 置伺服系统的一些基本理论、几种基本的校正装置以及它们的设计步 骤,本章是以后各章中控制设计的理论基础。 太原理工大学硕士研究生学位论文 第三章电液控制系统的理论建模和仿真 本课题研究建立系统动态数学模型的方法,在以后的讨论中若不 加以特别说明,“建模”即指建立系统的动态数学模型。理论建模即 分析法建模是根据系统的物理构成和工作原理,运用各种物理定律 ( 如能量守恒、动量矩定理、流体力学的有关定理以及各种电路定理 等) ,这种建模方法必须做一些假设和简化,否则所建立的数学模型 过于复杂,不易求解。为了便于求解所做的假设和简化使得模型精度 降低,有时甚至和实际情况出现相当大的偏差,这就使得这种模型的 直接应用受到限制,所以在工程控制系统的设计中,通常要使用实验 建模的方法对理论模型进行修正,以使其精度满足使用要求。 在电液控制系统建模中,除般系统建模所存在的共同问题外, 尚存在两个问题,其一是因控制系统的动力部分是由电液转换元件一 一电液伺服阀和执行元件液压缸或液压马达组成,因此存在容积 式流体动力传动系统及其组成元件和工作介质工作特性数学描述及 非线性特性的线性化问题,其二是电液控制系统的应用范围十分广 泛,其作动器复杂多样、复杂,因此必须分类研究。 在建立数学模型之后,为了预测电液控制系统的动态特性,需要 进行系统仿真,是指利用计算机来运行仿真数学模型,模拟实际系统 的运行状态及其随时间变化的过程,并通过对仿真运行过程的观察和 统计,预测系统的仿真输出参数和基本特性。为此,本课题开发了电 液控制系统的仿真软件。 太原理工大学硕士研究生学位论文 3 1 电液伺服阀的特性研究和建模和仿真 电液伺服阀是电液控制系统的主要控制器件。工业用的电液伺服 阀不论何种类型,其末级均为四通滑阀,通过阀芯的移动,控制来自 液压泵站( 液压源) 的高压油流向液压缸二个油腔之一,另一腔的低 压油通过阀的开口流回泵站的低压油箱,从而使活塞带动工作机构向 一个方向运动。改变阀芯的移动方向即可改变活塞的运动方向,而阀 i 占移动量则决定滑阀开口量的大小,控制通过阀口流向液压缸的高压 油流量( 负载流量) ,从而控制活塞运动速度。根据流体力学定律, 负载流量魏是阀开口周长彤,阀开口量x ,液压缸二腔的负载压差 r 以及油液物理性质等参数的函数,即 姨= 厂杪,乃,r ,) ( 3 1 ) 这里绕与兄之间为非线性关系。为把这种非线性问题变为较简 单的线性问题来处理,在建模中多采用小扰动线性化方法,这是符合 实际情况的,因为伺服阀在工作过程中,滑芯一般是在平衡点附近作 微小的移动。线性化后,负载流量吼的线性方程的系数即所谓阀系 数:阀的流量增益世。,压力增益足,和压力流量系数必。 本项目采用国产凹y 一6 型力反馈二级电液伺服阀,图3 1 即为 该电液伺服阀的方块图。 太原理工大学硕士研究生学位论文 至挡板的压力反馈力反馈通道 尉3 1电波伺服阁的方块圈 f i g _ 3 1 b 1 0 c kd i a 舯mo f t h es e r v ov a j v eo f t h ee l 的h y d r a u l i c 图中: 血。伺服放大器的差动输入电压 “伺服放大器每边的增益 墨侗服阀力矩马达的力矩常数 犬。力矩马达每个线圈的电阻 k 力矩马达每个线圈回路中放大器的内阻 s 拉普拉斯算子 吃力矩马达每线圈的衔铁回路的转折频率 r 力矩马达衔铁回转中心到喷咀中心的距离 凡喷咀挡板阀喷咀孔的面积 茵 一 华i 甲f 屹 薹生rll,hil 一 目 k 一 太原理工大学硕士研究生学位论文 只。作用在喷咀挡板阀挡板上的反馈压差 ,。力矩马达衔铁及任何加于其上的负载的惯量 k 。,力矩马达转轴的净弹簧常数 k ,悬臂反馈杆自由端( 即和阀芯相连的一端) 的弹簧常数 6 喷咀中心到力反馈杆端的距离 k ;力矩马达每一线圈的反电动势常数 a 口力矩马达的转角惯量 缸,挡板的位移增量 瓦。喷咀挡板阀的流量增益 彳。滑阀阀芯的端面积 。喷咀挡板阀带动滑阀芯的的液压固有频率 毛喷咀挡板阀带动滑阀芯的阻尼比 拟。滑阀阀芯的位移 分析图3 1 所示的方块图:这里存在鼹个反馈通道,其一是阀芯 定位回路,它由阀芯和挡板间的弹簧连接形成的力反馈构成,是主要 反馈通道。另一回路是由作用在挡板上的压力反馈形成,其反馈作用 较阀芯定位回路弱得多。 阀芯定位回路是l 型伺服回路,其速度常数为 太原理工大学硕十研究生学位论文 图中 k 。伺服阀放大增益( ,州矿) k 。前置阀增益( 在三级阀中前置阀即力反馈阀,在动圈双 滑阀中,前置阀为力马达及一组阀) ( 3 s 蒯) q 前置阀的输出流量( 3 s ) m 。l 前置阀的固有频率( m d j ) 占。前置阀的阻尼比 爿。功率级滑阀的端面积( m 2 ) 缸。功率级滑阀的位移量( 研) k :功率级滑阀的流量增益( 研3 s 删) 巧位移传感器的增益( 矿聊) j 拉普拉斯算子 其闭环传递函数为 丝: u 1 k , + 墨! ! + 1 世。足酊世, ( 3 7 ) 由于动圈双滑阀的前置级固有频率珊。都比较高,所以在简化时 略去三阶项,使系统传递函数变为 4 2 也 2 一山 一国一k 垡 一 太原理工大学硕士研究生学位论文 对于5 0 胁以下的频率,可用如下惯性环节来近似: h o ) = 熹 ( 3 ,) 式中:流量增益彤。= 3 3 3 2 l o 3 s 4 时间常数z = o 0 0 2 9 s 由此得到如下传递函数 h b l :! :丝兰坚 、7 o 0 0 2 9 s + l 其频晌函数曲线如图3 3 所示 霉 g 孟 ( 3 1 0 ) 图3 4 频响函数曲线图 f i 9 3 1 4f r e q u e n c yr e s p o n d s 也ec u r v e 铲印ho f 觚“o n 当有效工作频率在5 0 肫以上时,可用如下二阶环节来近似 太原理工大学硕士研究生学位论文 ( 3 1 1 1 h 。) = 丽斋罢 仔 其频响函数曲线图如图3 4 所示 3 2 电液控制系统动力组件的特性研究和建模和仿真 在电液伺服控制系统中液压缸或液压马达是执行机构,因此有时 统称其为作动器。由电液伺服阀和作动器组成的动力部件是电液控制 系统的基本部件。它与预定的机械负载构成的基本系统的特性是控制 系统设计的基础,因此首先研究这个基本系统的特性和建模。在许多 工业应用中,往往要求液压缸承受较大的动态载荷,例如冶金工业中 轧钢机电液伺服控制液压压下系统;工程试验用的电液振动台及动态 材料试验机等。在这些情况下,液压缸就有较大的尺寸,于是它可能 成为电液伺服系统中动态性能最差的一个环节,从而对电液伺服控制 系统的动态性能有决定性的影响。系统中液压缸和负载是连在一起 的,它的传递函数和负载有关,最简单的情况是只有单自由度纯惯性 负载,对于多自由度负载和弹性负载,情况则比较复杂,在这种情况 下,在系统建模和仿真中,负载的力学和数学模型就必须一并加以研 4 5 每百一巧 + = ( 丢才州 太原理工大学硕士研究生学位论文 求得 a 液压缸活塞的有效作用面积 眈粘阻系数 k 负载弹簧刚度 只工作力 埘,总质量 耻帅k 嘻形 式中: m 系统可动部分及负载质量 p 液压油的密度 矿液压缸两腔总的体积 4 ,各连接管道的横截面积 矿各连接管道的体积 伺服阀线性化后的流量方程 q l = k 。越一c p l 式中: ( 3 1 4 ) ( 3 1 5 ) 足。:孥伺服阀的流量增益,可由伺服阀空载流量曲线中 础 4 7 太原理工大学硕士研究生学位论文 耻静一例* 阀的流量一压力系数氆= 鲁 战。伺服阀的阀善耋鹜 基誊瞳蠢塔 羹i 。囊鼬跨鹂魏已嚣耐刻j 带薹蒙副雏饕跬雕掣菇孽雏刚 垂女 圳掣 告莹西剥捌虿知拭j 斟一鋈l 囊妇i 攀薹一冀要囊雾 耋耋囊 霞裂一朝;一襄势一翻s 麓爱雾雾 :;鬻: 翻删i 篓。滚灌第孺臻谚m 她 鬻未鬓超萎意薹e 馨驵 羹;墅戳溪丛哩堡释设计准则以后,式( 3 - 2 ) 就变成 驴(南) 鲁 江, 尺寸6 取决于反馈弹簧的设计,以便使增益达到最大。b 的最 大值受稳定性考虑所限,且小于回路中最低固有频率的2 0 左右。在 力反馈回路内存在两个这样的固有频率。包含力矩马达动态特性在内 太原理工大学硕士研究生学位论文 垃:芦i 孽墨墅兰堕; ( 3 - 6 ) 血8 ( 1 + 专 ( ,+ 毒 ( 岳+ 等+ 1 。“ 式中位置回路的闭环响应已经用一个频率为墨,处的滞后环节和 q = k ,战。) 来作为输出参数雨不是用出。由于置是式( 3 6 ) 图3 2 简化后的电液伺服闰的方块图 f i g _ 3 2 b l o c kd i a g r 姗0 f t l l es e r v ov a l v eo f t l l o e i e c 仃o _ h y d r a u l i ca f i e rs i m p l i 蜘n g 4 l x 太原理工大学硕士研究生学位论文 而在系统方块图中加以综合。在方块图的前向通道中,x 。( s ) 和,( s ) 的 传递函数是主要的。因此,一般液压缸的传递函数是指x 。0 ) 和,0 ) 或 吃( s ) 和,o ) 的关系,它与负载情况有关。现只讨论纯惯性负载的情况。 若系统主要承受惯性负载,则弹性负载可略去不计,即彤“o , 在电液伺服振动台的台面上安装机器部件作振动环境试验即属此类 情况。在一般情况下,式( 3 1 9 ) 中鲁笋 h + 肌,定义矩阵m ( ) 为 叫_ v ) 一h r 一一岫一咒l 如y( q r r ) 4 o 兄t q l - h r 一也,如rkh r 一r 一k - 吐一兄:( 屿r ,_ :b :y 凡:慨) o 。吒:z 一,0 :) 2 一心:( 她yk h r ; ; i : 一也) 4 一,吐一h ) 一凡h r 钕ykh ) 4 o kh ) 一k 瓴r 一也yo k , ( 4 6 ) 写成量测方程的矩阵形式有: y ( ) = 妒( p ( ) + 占e )( 4 7 ) 经最小二乘估计公式( l s e ) 推导,可得满足最小方差时的估计 r r r 。埘。;。 蚶。埘0,。 。吗。啦;o吨 0叫0;0 太原理工大学硕士研究生学位论文 参数向量:莎( ) :眵r ( 弦( 汁1 矽7 ( 妒( ) (4-8) 由于式( 4 8 ) 中的矩阵求逆是十分费时的,为此采用其递推算法。 设系统再增加一对输出量y + + 1 ) ,输入量“0 + + 1 ) 时,可重新 定义向量: 帆,= y 黜。啡) + 。) e = e 。0 + 1 ) e 耐,o + 1 ) :0 + 2 ) e 。:0 + 2 ) e 0 羹审三三i i 囊茬蒙铠誊| 蓁9 i 墓一崾。萋ii ? ? 蓬。窜馥j ? - 剐1 8 豁攀篑掰罂岢窘拄釜& 酗靼; 塞鳍室i ;t 霎i 蓉嚣;孵孽童 ;垂一b i 芝固j 毁燃辨坤丽醣嚣端甄酬; 薹羹羹l i “蓁i 薹嚣;里羹塞l 重:耋瑟耋i 亭羹莲; e 雾i 羹墅翼l 孽主”鋈妻;羹鋈j ;驾; 蓁? 薹羁囊:塞喇黎蠹i 胬莛螽翮鸶l | 郦量鞠醪张娟孺聪;嚣一聪猎撩豁磊;灌 ;| i | | ;唧每i i e 茎! 龇;蓦 。 5 2 电液伺服振动台控制系统的综合校正 5 2 1 基于频率响应法的控制系统校正 根据第三章的分析,建立了系统的理论 根据第三章的分析,建立了系统的理论模型为 73 太原理工大学硕士研究生学位论文 l e v v s a l l a 一法均是假定系统模型的阶次是已知的,这就给“黑箱” 辨识带来较大的误差。实践证明,一个模型的阶次不准确可能导致系 统设计时发生严重问题( 如稳定性) 。所以在辨识过程中,模型阶次 是否合适必须经过校验。本研究基于f 准则在上述系统辨识主程序中 设计了校验阶次的子程序,其算法为: n 半l 等j 肛d 式中,为n ,阶模型的目标函数;n 为输入输出序列的数据;_ 为 模型阶次。 当计算出的f 值大于由“数理统计”中的f 分布表中按自由度 ( 一:一,一”:) 查出的f 值时,低阶模型是不适用的;因此需进一步 建立更高阶的模型,同现有的商阶模型一起,再计算一次f 值;反之, f 3 ,j 值得减小显著。当阶数再增 大时,j 值得减小并不显著。 b 拟合误差以3 阶为最小( = o 0 1 1 ) ,当阶数再增大时,拟合 误差略有增大。 c 时滞常数勺* o ,说明本系统在5 阶以内时滞现象不明显。 6 7 太原理工大学硕士研究生学位论文 图4 4系统实测频响曲线 f 追4 - 4f r e q u e n c yr e s p o n s eo f s y s t e m 由此拟合出该电液伺服控制系统的实验模型为 一,、 o 1 8 5 6 1 0 + o 4 4 3 9 x 1 0 叫s + o 1 0 5 7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论