




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
I统计I1随机抽样11I12012浙江卷某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为_11160解析 设样本中男生、女生的人数分别为x、y,且xy43,那么x280160.14I12012福建卷一支田径队有男女运动员98人,其中男运动员有56人,按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_1412解析解题的关键是记住分层抽样中最基本的比例关系,即可解决分层抽样的所有计算问题抽取女运动员的人数是:282812.15I1、K22012天津卷某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,列出所有可能的抽取结果;求抽取的2所学校均为小学的概率15解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为A1,A2,A1,A3,A1,A4,A1,A5,A1,A6,A2,A3,A2,A4,A2,A5,A2,A6,A3,A4,A3,A5,A3,A6,A4,A5,A4,A6,A5,A6,共15种从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为A1,A2,A1,A3,A2,A3,共3种所以P(B).17K8、I1、I22012北京卷近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a0,abc600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值注:s2(x1)2(x2)2(xn)2,其中为数据x1,x2,xn的平均数17解:(1)厨余垃圾投放正确的概率约为.(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为0.7,所以P(A)约为10.70.3.(3)当a600,bc0时,s2取得最大值因为(abc)200,所以s2(600200)2(0200)2(0200)280000.11I12012湖北卷一支田径运动队有男运动员56人,女运动员42人现用分层抽样的方法取若干人,若抽取的男运动员有8人,则抽取的女运动员有_人11答案 6解析 设抽取的女运动员为x人,因为分层抽样在每个层次抽取的比例是相等的,所以,解得x6.故抽取女运动员6人2I12012江苏卷某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_名学生215解析本题考查简单随机抽样中的分层抽样解题突破口为直接运用分层抽样的定义即可由题意可得高二年级应该抽取学生5015(名)I2用样本估计总体3I22012陕西卷对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图11所示),则该样本中的中位数、众数、极差分别是()图11A46,45,56B46,45,53C47,45,56D45,47,533A解析本题主要考查茎叶图数据的读取和数据特征的简单计算,由所给的茎叶图可知所给出的数据共有30个,其中45出现3次为众数,处于中间位置的两数为45和47,则中位数为46;极差为681256.故选A.14I22012山东卷如图14是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为_图14149解析本题考查频率分布直方图及样本估计总体的知识,考查数据处理能力,容易题样本容量50,样本中平均气温不低于25.5的城市个数为5010.189.4I22012山东卷在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A众数B平均数C中位数D标准差4D解析本题考查众数、平均数、中位数及标准差的概念,考查推理论证能力,容易题当每个样本数据加上2后,众数、平均数、中位数都会发生变化,不变的是数据的波动情况,即标准差不变6I22012江西卷小波一星期的总开支分布如图11(1)所示,一星期的食品开支如图11(2)所示,则小波一星期的鸡蛋开支占总开支的百分比为()图11A30%B10%C3%D不能确定6C解析鸡蛋占食品总开支的比为10%,又食品开支占总开支的比为30%,因此鸡蛋占总开支的比为10%30%3%.故选C.2I22012湖北卷容量为20的样本数据,分组后的频数如下表:分组10,20)20,30)30,40)40,50)50,60)60,70)频数234542则样本数据落在区间10,40)的频率为()A0.35B0.45C0.55D0.652B解析 由表可知:样本数据落在区间10,40)的频数为2349,又样本容量为20,则频率为0.45.故选B.13I22012广东卷由正整数组成一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为_(从小到大排列)131,1,3,3解析设四个数从小到大分别是:x1,x2,x3,x4,根据已知可以得到方程组:即又因为四个数都是正整数,根据第一个式子知x21,x33或x22,x32,则x11,x43或x12,x42,代入第三个式子,只有x11,x21,x33,x43满足条件,所以四个数分别是1,1,3,3.18I22012安徽卷若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:分组频数频率3,2)0.102,1)8(1,20.50(2,310(3,4合计501.00(1)将上面表格中缺少的数据填在答题卡的相应位置(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数18解:(1)频率分布表分组频数频率3,2)50.102,1)80.16(1,2250.50(2,3100.20(3,420.04合计501.00(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3内的概率约为0.500.200.70;(3)设这批产品中的合格品数为x件,依题意有,解得x201980.所以该批产品的合格品件数估计是1980件19I2、K22012陕西卷假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:图18(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率19解:(1)甲品牌产品寿命小于200小时的频率为,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为.(2)根据抽样结果,寿命大于200小时的产品有7570145(个),其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为.17I2、K22012广东卷某校100名学生期中考试语文成绩的频率分布直方图如图14所示,其中成绩分组区间是:50,60),60,70),70,80),80,90),90,100图14(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在50,90)之外的人数分数段50,60)60,70)70,80)80,90)xy1121344517解:(1)由频率分布直方图可知(0.040.030.022a)101.所以a0.005.(2)该100名学生的语文成绩的平均分约为0.05550.4650.3750.2850.059573.(3)由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段50,60)60,70)70,80)80,90)x5403020xy11213445y5204025于是数学成绩在50,90)之外的人数为100(5204025)10.17K8、I1、I22012北京卷近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a0,abc600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值注:s2(x1)2(x2)2(xn)2,其中为数据x1,x2,xn的平均数17解:(1)厨余垃圾投放正确的概率约为.(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为0.7,所以P(A)约为10.70.3.(3)当a600,bc0时,s2取得最大值因为(abc)200,所以s2(600200)2(0200)2(0200)280000.13I22012湖南卷图13是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_(注:方差s2(x1)2(x2)2(xn)2,其中为x1,x2,xn的平均数)图13136.8解析本题通过茎叶图考查数理统计中的平均数和方差,意在考查考生数理统计的实际应用能力;具体的解题思路和过程:先求出平均数,再用方差公式求方差由茎叶图可求得11,代入方差公式得s2(118)2(119)2(1110)2(1113)2(1115)26.8.18K2、B10、I22012课标全国卷某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售如果当天卖不完,剩下的玫瑰花作垃圾处理(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率18解:(1)当日需求量n17时,利润y85.当日需求量n17时,利润y10n85.所以y关于n的函数解析式为y(nN)(2)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(5510652075168554)76.4.利润不低于75元当且仅当日需求量不少于16枝故当天的利润不少于75元的概率为p0.160.160.150.130.10.7.I3 正态分布I4变量的相关性与统计案例3I42012课标全国卷在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i1,2,n)都在直线yx1上,则这组样本数据的样本相关系数为()A1B0C.D13D解析因为所有点都分布在一条直线上,说明相关性很强,相关系数达到最大值,即为1.故选D.5I42012湖南卷设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重必为58.79kg5D解析本题考查线性回归方程的特征与性质,意在考查考生对线性回归方程的了解,解题思路:A,B,C均正确,是回归方程的性质,D项是错误的,线性回归方程只能预测学生的体重选项D应改为“若该大学某女生身高为170cm,则估计其体重大约为58.79kg”易错点本题易错一:对线性回归方程不了解,无法得出答案;易错二:对回归系数b不了解,错选C;易错三:线性回归方程有预测的作用,得出的结果不是准确结果,误以为D项是对的18B10、I42012福建卷某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程bxa,其中b20,ab;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)18解:(1)由于(x1x2x3x4x5x6)8.5,(y1y2y3y4y5y6)80.所以ab80208.5250,从而回归直线方程为20x250.(2)设工厂获得的利润为L元,依题意得Lx(20x250)4(20x250)20x2330x1000202361.25.当且仅当x8.25时,L取得最大值故当单价定为8.25元时,工厂可获得最大利润19I4、K22012辽宁卷电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图16将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女合计(2)将日均收看该体育节目不低于50分钟的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版市政公用设施施工总承包合同示范文本(含公共安全)
- 2025车库租赁与智能充电设施建设合作协议
- 2025版雇主责任赔偿和解协议书
- 2025年度智能硬件供应商返点合作协议书下载
- 2025版水上乐园儿童游乐设施定制合作协议
- 2025标准托盘租赁与智慧物流服务合同
- 2025版外墙真石漆施工与质量追溯合同
- 2025垫资建设资金合作合同模板
- 2025年新能源汽车动力电池碳足迹评估与减排策略报告
- 2025版跨区域建筑工程材料采购合同样本
- 2025年吉林省中考语文真题(含答案)
- 2025高级会计师考试试题及答案
- 工地建筑钢板租赁合同范本
- 光传输业务配置课件
- 2025年辽宁省地质勘探矿业集团有限责任公司校园招聘笔试备考题库带答案详解
- 2025年青海辅警招聘考试题及答案
- 2025新外研版初中英语八年级上全册课文原文翻译
- 钢结构安装安全操作规程
- 流程优化活动方案
- 消防装备认识课件
- 2025年山西中考道德与法治真题解读及答案讲评课件
评论
0/150
提交评论