




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 chapter7ltidiscrete timesystemsinthetransformdomain transferfunctionclassificationtypesoflinear phasetransferfunctionssimpledigitalfilters 2 typesoftransferfunctions thetime domainclassificationofadigitaltransferfunctionbasedonthelengthofitsimpulseresponsesequence finiteimpulseresponse fir transferfunction infiniteimpulseresponse iir transferfunction 3 typesoftransferfunctions inthecaseofdigitaltransferfunctionswithfrequency selectivefrequencyresponses therearetwotypesofclassifications 1 classificationbasedontheshapeofthemagnitudefunction h ei 2 classificationbasedontheformofthephasefunction 4 7 1transferfunctionclassificationbasedonmagnitudecharacteristics digitalfilterswithidealmagnituderesponsesboundedrealtransferfunctionallpasstransferfunction 5 7 1 1digitalfilterswithidealmagnituderesponses adigitalfilterdesignedtopasssignalcomponentsofcertainfrequencieswithoutdistortionshouldhaveafrequencyresponseequalto1atthesefrequencies andshouldhaveafrequencyresponseequalto0atallotherfrequencies 6 digitalfilterswithidealmagnituderesponses therangeoffrequencieswherethefrequencyresponsetakesthevalueof1iscalledthepassband therangeoffrequencieswherethefrequencyresponsetakesthevalueof0iscalledthestopband 7 digitalfilterswithidealmagnituderesponses magnituderesponsesofthefourpopulartypesofidealdigitalfilterswithrealimpulseresponsecoefficientsareshownbelow 8 digitalfilterswithidealmagnituderesponses thefrequencies c c1 and c2arecalledthecutofffrequencies anidealfilterhasamagnituderesponseequalto1inthepassbandand0inthestopband andhasa0phaseeverywhere 9 digitalfilterswithidealmagnituderesponses earlierinthecoursewederivedtheinversedtftofthefrequencyresponsehlp ej oftheideallowpassfilter hlp n sin cn n n wehavealsoshownthattheaboveimpulseresponseisnotabsolutelysummable andhence thecorrespondingtransferfunctionisnotbibostable 10 digitalfilterswithidealmagnituderesponses also hlp n isnotcausalandisofdoublyinfinitelength theremainingthreeidealfiltersarealsocharacterizedbydoublyinfinite noncausalimpulseresponsesandarenotabsolutelysummable thus theidealfilterswiththeideal brickwall frequencyresponsescannotberealizedwithfinitedimensionalltifilter 11 digitalfilterswithidealmagnituderesponses todevelopstableandrealizabletransferfunctions theidealfrequencyresponsespecificationsarerelaxedbyincludingatransitionbandbetweenthepassbandandthestopband thispermitsthemagnituderesponsetodecayslowlyfromitsmaximumvalueinthepassbandtothe0valueinthestopband 12 digitalfilterswithidealmagnituderesponses moreover themagnituderesponseisallowedtovarybyasmallamountbothinthepassbandandthestopband typicalmagnituderesponsespecificationsofalowpassfilterareshownas 13 7 1 2boundedrealtransferfunctions acausalstablereal coefficienttransferfunctionh z isdefinedasaboundedreal br transferfunctionif forallvaluesofw letx n andy n denote respectively theinputandoutputofadigitalfiltercharacterizedbyabrtransferfunctionh z withx ej andy ej denotingtheirdtfts 14 boundedrealtransferfunctions integratingtheabovefrom to andapplyingparseval srelationweget thentheconditionimpliesthat 15 boundedrealtransferfunctions thus forallfinite energyinputs theoutputenergyislessthanorequaltotheinputenergy itimpliesthatadigitalfiltercharacterizedbyabrtransferfunctioncanbeviewedasapassivestructure if thentheoutputenergyisequaltotheinputenergy andsuchadigitalfilteristhereforealosslesssystem 16 boundedrealtransferfunctions thebrandlbrtransferfunctionsarethekeystotherealizationofdigitalfilterswithlowcoefficientsensitivity acausalstablereal coefficienttransferfunctionh z withisthuscalledalosslessboundedreal lbr transferfunction 17 boundedrealtransferfunctions example considerthecausalstableiirtransferfunction wherekisarealconstant itssquare magnitudefunctionisgivenby 18 boundedrealtransferfunctions thus for 0 h ej 2 max k2 1 2 0 h ej 2 min k2 1 2 ontheotherhand for 0 2 cos max 2 2 cos min 2 0here h ej 2 max k2 1 2 h ej 2 min k2 1 2 0 19 boundedrealtransferfunctions hence isabrfunctionfork 1 plotsofthemagnitudefunctionfor 0 5withvaluesofkchosentomakeh z abrfunctionareshownonthenextpage 20 boundedrealtransferfunctions lowpassfilter highpassfilter 21 7 1 3allpasstransferfunction themagnituderesponseofallpasssystemsatisfies a ej 2 1 forall theh z ofasimple1th orderallpasssystemis whereaisreal and oraiscomplex theh z shouldbe 22 allpasstransferfunction onerealpole onecomplexpole 23 allpasstransferfunction twoorderallpasstransferfunction ploes zeros 24 allpasstransferfunction generalize themth orderallpasssystemis ifwedenotepolynomial so 25 allpasstransferfunction thenumeratorofareal coefficientallpasstransferfunctionissaidtobethemirror imagepolynomialofthedenominator andviceversa weshallusethenotationtodenotethemirror imagepolynomialofadegree mpolynomialdm z i e 26 allpasstransferfunction theexpression impliesthatthepolesandzerosofareal coefficientallpassfunctionexhibitmirror imagesymmetryinthez plane 27 allpasstransferfunction toshowthat am ej 1weobservethat therefore hence 28 allpasstransferfunction properties acausalstablereal coefficientallpasstransferfunctionisalosslessboundedreal lbr functionor equivalently acausalstableallpassfilterisalosslessstructure themagnitudefunctionofastableallpassfunctiona z satisfies 29 allpasstransferfunction 3 let g denotethegroupdelayfunctionofanallpassfiltera z i e theunwrappedphasefunction c ofastableallpassfunctionisamonotonicallydecreasingfunctionofwsothat g iseverywherepositiveintherange0 w p 30 applicationofallpasssystem anycausalstablesystemcanbedenotedas h z hmin z a z wherehmin z isaminimumphase delaysystem useallpasssystemtohelpdesignstablefilters useallpasssystemtohelpdesignlinearphasesystem asimpleexample p361 fig7 7 31 7 2transferfunctionclassificationbasedonphasecharacteristic 1 thephasedelaywillcausethechangeofsignalwaveform 32 2 thenonlinearityofsystemphasedelaywillcausethesignaldistortion timedelayofsignalisdependedonsystemphasecharacteristic 33 3 ifweignorethephaseinformation then 34 linearphaserequirement 4 thelinearphasefirfilterdesign groupdelay 35 7 2transferfunctionclassificationbasedonphasecharacteristic zero phasetransferfunctionlinear phasetransferfunctionminimum phaseandmaximum phasetransferfunctions 36 7 2 1zero phasetransferfunction onewaytoavoidanyphasedistortionsistomakethefrequencyresponseofthefilterrealandnonnegative todesignthefilterwithazerophasecharacteristic butforacausaldigitalfilteritisimpossible 37 zero phasetransferfunction onlyfornon real timeprocessingofreal valuedinputsignalsoffinitelength thezerophaseconditioncanbemet leth z beareal coefficientrationalz transformwithnopolesontheunitcycle thenf z h z h z 1 hasazerophaseontheunitcycle 38 zero phasetransferfunction pleaselookatbookp362 thefunctionfiltfiltimplementstheabovezero phasefilteringscheme pleaselookatbookp412 p7 5 39 7 2 2linear phasetransferfunction thephasedistortioncanbeavoidedbyensuringthatthetransferfunctionhasaunitymagnitudeandalinear phasecharacteristic thatis h ej e j dhowtoperformthelinear phasefilter y n x n d y ej e j dx ej h ej y ej x ej e j d 40 linear phasetransferfunction example determinetheimpulseresponseofanideallowpassfilterwithalinearphaseresponse applyingthefrequency shiftingpropertyofthedtfttotheimpulseresponseofanidealzero phaselowpassfilterwearriveat 41 linear phasetransferfunction bytruncatingtheimpulseresponsetoafinitenumberofterms arealizablefirapproximationtotheideallowpassfiltercanbedeveloped thetruncatedapproximationmayormaynotexhibitlinearphase dependingonthevalueofn0chosen ifwechoosen0 n 2withnapositiveinteger thetruncatedandshiftedapproximation 42 linear phasetransferfunction figurebelowshowsthefiltercoefficientsobtainedusingthefunctionsincfortwodifferentvaluesofn 43 7 2 3minimum phaseandmaximum phasetransferfunction basedontheexpression thephasefunctionis where kand karezerosandpoles respectively 44 minimum phaseandmaximum phasetransferfunction wedefinetheexpression ej k and ej k aszerovectorsandpolevectors when kand kareinsidetheunitcircle and changefrom0to2 thechangeofphaseofthezero pole vectorsare2 when kand kareoutsidetheunitcircle and changefrom0to2 thechangeofphaseofthezero pole vectorsare0 45 minimum phaseandmaximum phasetransferfunction so onlyzerosorpolesinsidetheunitcirclecanaffectphasefunctionofh ej forcausalstablesystem wecandeduce so it sthephasedelay lag system whenallzerosareallinsidetheunitcircle weget it stheminimumphasedelaysystem 46 minimum phaseandmaximum phasetransferfunction whenallzerosarealloutsidetheunitcircle weget wheremisthenumberofzeros andit sthemaximumphasedelaysystem atransferfunctionwithzerosinsideandoutsidetheunitcircleiscalledamixed phasetransferfunction example7 4 p367 47 7 3typesoflinear phasefirtransferfunctions itisnearlyimpossibletodesignalinear phaseiirtransferfunction itisalwayspossibletodesignanfirtransferfunctionwithanexactlinear phaseresponse wenowdeveloptheformsofthelinear phasefirtransferfunctionh z withrealimpulseresponseh n 48 linear phasefirtransferfunctions ifh z istohavealinear phase itsfrequencyresponsemustbeoftheform wherecand areconstants and calledtheamplituderesponse alsocalledthezero phaseresponse isarealfunctionof consideracausalfirtransferfunctionh z oflengthn 1 i e ofordern 49 linear phasefirtransferfunctions forarealimpulseresponse themagnituderesponse h ej isanevenfunctionof i e h ej h e j since theamplituderesponseistheneitheranevenfunctionoranoddfunctionof i e 50 linear phasefirtransferfunctions thefrequencyresponsesatisfiestherelationh ej h e j orequivalently therelation ifisanevenfunction thentheaboverelationleadstoej e j implyingthateither 0or 51 linear phasefirtransferfunctions from wehave substitutingthevalueof intheaboveweget 52 linear phasefirtransferfunctions replacing with inthepreviousequationweget makingachangeofvariablel n n werewritetheaboveequationas 53 linear phasefirtransferfunctions as wehaveh n e j c n h n n ej c n n theaboveleadstotheconditionwhenc n 2h n h n n 0 n n thus thefirfilterwithanevenamplituderesponsewillhavealinearphaseifithasasymmetricimpulseresponse 54 linear phasefirtransferfunctions ifisanoddfunctionof thenfrom wegetej e j as theaboveissatisfiedif 2or 2 then reducesto 55 linear phasefirtransferfunctions thelastequationcanberewrittenas as fromtheaboveweget 56 linear phasefirtransferfunctions makingachangeofvariablel n n werewritethelastequationas equatingtheabovewith wearriveattheconditionforlinearphaseas 57 linear phasefirtransferfunctions h n h n n 0 n nwithc n 2thereforeafirfilterwithanoddamplituderesponsewillhavelinear phaseresponseifithasanantisymmetricimpulseresponse 58 linear phasefirtransferfunctions sincethelengthoftheimpulseresponsecanbeeitherevenorodd wecandefinefourtypesoflinear phasefirtransferfunctionsforanantisymmetricfirfilterofoddlength i e nevenh n 2 0weexaminenexttheeachofthe4cases 59 linear phasefirtransferfunctions 60 linear phasefirtransferfunctions type1 symmetricimpulseresponsewithoddlengthinthiscase thedegreenisevenassumen 8forsimplicitythetransferfunctionh z isgivenby 61 linear phasefirtransferfunctions becauseofsymmetry wehaveh 0 h 8 h 1 h 7 h 2 h 6 andh 3 h 5 thus wecanwrite 62 linear phasefirtransferfunctions thecorrespondingfrequencyresponseisthengivenby thequantityinsidethebracesisarealfunctionofw andcanassumepositiveornegativevaluesintherange0 63 linear phasefirtransferfunctions wherebiseither0orp andhence itisalinearfunctionofwinthegeneralizedsensethegroupdelayisgivenby indicatingaconstantgroupdelayof4samples thephasefunctionhereisgivenby 64 linear phasefirtransferfunctions inthegeneralcasefortype1firfilters thefrequencyresponseisoftheform 65 linear phasefirtransferfunctions type2 symmetricimpulseresponsewithevenlengthtype3 antisymmetricimpulseresponsewithoddlengthtype4 antisymmetricimpulseresponsewithevenlengthp371 372aboutthesefirtransferfunctions 66 fourtypesoflinearphasefilter 67 fourtypesoflinearphasefilter 68 linear phasefirtransferfunctions whichisseentobeaslightlymodifiedversionofalength 7mo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市政桥梁加固工程方案
- 2025年临床营养考试题库及答案
- 风景园林工程景观照明设计与安装方案
- 基础工程施工现场安全管理方案
- 室内管道营销策划方案
- 18MW分布式光伏项目技术方案
- 黄石全自动智能营销方案
- 房屋建筑地下空间开发设计方案
- 三体系咨询调研方案
- 湖南调岗咨询方案
- 首尔之春影视解读
- 医院病区突然停电应急处置
- 2025年移动云考试题库
- 桥隧工程培训频课件
- 幼儿园教师防恐防暴安全知识培训
- 1.2位置 位移(教学课件) 高中物理教科版必修第一册
- 浅谈机关干部身心健康
- (2025)未成年人保护法知识竞赛必刷题库附含参考答案
- 江苏省淮安市2024-2025学年七年级下学期6月期末考试英语试题(含答案解析)
- 小学生拖地课件
- 期货技术指标培训课件
评论
0/150
提交评论