




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时平面与平面平行的性质 1 使学生掌握平面与平面平行的性质 并会应用性质解决问题 2 理解直线与直线 直线与平面 平面与平面之间的位置关系可以相互转化 3 让学生在发现中学习 增强学习的积极性 让学生了解空间与平面互相转换的数学思想 回想一下 平面与平面的判定定理是什么 平面与平面的判定定理解决了平面与平面平行的条件问题 反之 在平面与平面平行的条件下 可以得到什么结论呢 探究1 如果两个平面平行 那么一个平面内的直线与另一个平面有什么位置关系 结论 如果两个平面平行 那么一个平面内的直线与另一个平面平行 探究2 如果两个平面平行 两个平面内的直线有什么位置关系 结论 如果两个平面平行 那么两个平面内的直线要么是异面直线 要么是平行直线 探究3 若 直线l与平面 相交 那么直线l与平面 的位置关系如何 结论 相交 探究4 若 平面 分别与平面 相交于直线a b 那么直线a b的位置关系如何 为什么 平行 由于两条交线a b分别在两个平行平面 内 所以a与b不相交 又因为a b都在同一平面 内 由平行线的定义可知a b 探究5 综上分析 在平面与平面平行的条件下可以得到什么结论 并用文字语言表述之 定理5 4如果两个平行平面同时和第三个平面相交 那么它们的交线平行 上述定理通常称为平面与平面平行的性质定理 该定理用符号语言可怎样表述 a b 想一想 平面与平面平行的性质定理可简述为 面面平行 则线线平行 在实际应用中它有何功能作用 功能作用 可以由平面与平面平行得出直线与直线平行 平面和平面平行的判定定理 直线与直线平行 平面与平面平行 平面和平面平行的性质定理 结论 1 若两个平面互相平行 则其中一个平面中的直线必平行于另一个平面 2 平行于同一平面的两平面平行 3 过平面外一点有且只有一个平面与这个平面平行 4 夹在两平行平面间的平行线段相等 例1 求证 夹在两个平行平面间的平行线段相等 如图 ab cd 且a c b d 求证 ab cd 证明因为ab cd 所以过ab cd可作平面 且平面 与平面 和 分别相交于ac和bd 因为 所以bd ac 因此 四边形abdc是平行四边形 所以ab cd 例2如图 平面 两两平行 且直线l与 分别交于点a b c 直线m与 分别交于点d e f ab 6 bc 2 ef 3 求de的长 解当直线m与l共面时 该平面与 分别交于直线ad be cf 因为 两两平行 所以ad be cf 故 当直线m与l不共面时 连接dc 设dc与 相交于点g 则平面acd与 分别相交于直线ad bg 平面dcf与 分别交于直线ge cf 因为 两两平行 所以bg ad ge cf 因此 所以又因为ab 6 bc 2 ef 3 所以 de 9 1 设平面 平面 a b c是ab的中点 当a b分别在 内运动时 那么所有的动点c a 不共面 b 当且仅当a b在两条相交直线上移动时才共面 c 当且仅当a b在两条给定的平行直线上移动时才共面 d 不论a b如何移动都共面 d 2 过长方体abcd a1b1c1d1的任意两条棱的中点作直线 其中能够与平面acc1a1平行的直线有 条 解析 如图 与ac平行的直线有4条 与aa1平行的直线有4条 连接mn 则mn 面acc1a1 这样的直线也有4条 包括mn 12 3 正方体abcd a1b1c1d1中 e m f为棱b1c1 c1d1和b1b的中点 试过e m作一平面与平面a1fc平行 解如图 取cc1中点g 连接b1g 取c1g中点h 连接eh 则eh b1g fc 同理 连接mh 则mh a1f 连接em 又mh eh h 面emh 面a1fc 即面ehm为所求平面 如果一个平面内有两条相交直线都平行于另一个平面 那
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文案写作服务合同范本
- 生产设备订购合同范本
- 学校店面转让合同范本
- 测绘保密责任合同范本
- 珠宝翡翠配送合同范本
- 本地特色小吃服务合同
- 刮白劳务合同范本
- 线下社区活动课外实践合同
- 酒店网络预定合同范本
- 奥特曼推广合同范本
- 2025年重庆对外建设集团招聘考试笔试试题(含答案)
- 信访工作心得及改进措施总结报告
- 班组人工协议书
- 2025广西公需科目考试答案(3套涵盖95-试题)一区两地一园一通道建设人工智能时代的机遇与挑战
- 沉淀池安全操作规程
- 职业规划杨彬课件
- 车间现场品质培训
- 新教师职业素养提升培训
- 2025年高考英语全国一卷听力评析及备考建议
- 中试基地管理制度
- 2025至2030中国工业电机行业产业运行态势及投资规划深度研究报告
评论
0/150
提交评论