高中数学 3.1.4概率的加法公式课件 新人教B版必修3.ppt_第1页
高中数学 3.1.4概率的加法公式课件 新人教B版必修3.ppt_第2页
高中数学 3.1.4概率的加法公式课件 新人教B版必修3.ppt_第3页
高中数学 3.1.4概率的加法公式课件 新人教B版必修3.ppt_第4页
高中数学 3.1.4概率的加法公式课件 新人教B版必修3.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成才之路 数学 路漫漫其修远兮吾将上下而求索 人教b版 必修3 概率 第三章 3 1事件与概率 第三章 3 1 4概率的加法公式 第二次世界大战中 英美盟军因为运输队在大西洋上常常受到德国潜艇的袭击而焦头烂额 为此 有位美国海军将领专门去请教了几位数学家 数学家们运用概率论分析后发现 舰队与敌潜艇相遇近似于一个随机事件 从数学角度来看这一问题 它具有一定的规律 一定数量的船 如100艘 编队规模越小 编次就越多 如每次20艘 就要有5个编次 编次越多 与敌人相遇的概率就越大 美国海军接受了数学家的建议 命令船队在指定海域集合 再集体通过危险海域 然后各自驶向预定港口 结果奇迹出现了 盟军舰队遭到袭击的概率由原来的25 降低为1 大大减少了损失 保证了物资的及时供应 一 事件的关系与运算1 互斥事件不可能同时发生的两个事件叫 或称为 2 并 和 事件若事件a和事件b中 有一个发生 则c发生 若c发生 则a b中 有一个发生 称事件c为a与b的并 或和 一般地 由事件a和b 有一个发生所构成的事件c 称为事件a与b的并 或和 互斥事件 互不相容事件 至少 至少 至少 1 与集合定义类似 并事件可如图表示 2 事件a与事件b的并事件等于事件b与事件a的并事件 即a b b a 3 并事件包含三种情形 事件a发生 事件b不发生 事件a不发生 事件b发生 事件a b同时发生 4 推广 如果事件a1 a2 an中的任何两个都互斥 就称事件a1 a2 an彼此互斥 从集合角度看 n个事件彼此互斥是指各个事件所含结果的集合彼此不相交 如在一次投掷骰子的实验中 若c1 出现1点 c2 出现2点 c3 出现3点 c4 出现4点或出现5点 c5 出现6点 则事件c1 c2 c3 c4 c5彼此互斥 3 对立事件不可能同时发生且必有一个发生的两个事件互为对立事件 1 事件a与b对立是指事件a与事件b在一次试验中有且仅有一个发生 2 对立事件是针对两个事件来说的 一般地 两个事件对立 则两个事件必是互斥事件 反之 两个事件是互斥事件 却未必是对立事件 3 对立事件是一种特殊的互斥事件 若a与b是对立事件 则a与b互斥且a b为必然事件 1 p a 二 概率的几条基本性质1 概率p a 的取值范围由于事件的频数总是小于或等于试验的次数 所以频率在0和1之间 从而任何事件的概率在0到1之间 即0 p a 1 1 必然事件b一定发生 则p b 1 2 不可能事件c一定不发生 因此p c 0 p a p b 1 用频率可以估计概率 因此概率应具有频率的性质 2 加法公式的前提条件是 事件a与事件b互斥 如果没有这一条件 加法公式将不能应用 如掷骰子试验中 出现偶数点 出现2点 分别记为事件a b 则a b不互斥 p a b p a p b 3 如果事件a1 a2 an彼此互斥 那么p a1 a2 an 即彼此互斥的事件并的概率等于它们的概率的和 4 在求某些复杂的事件的概率时 可将其分解成一些较易求的彼此互斥的事件 化整为零 化难为易 p a1 p a2 p an 3 对立事件的概率公式若事件a与b互为对立事件 则a b为必然事件 所以p a b 1 又p a b p a p b p a 1 p b 1 公式使用的前提必须是对立事件 否则不能使用此公式 2 当一事件的概率不易直接求 但其对立事件的概率易求时 可运用此公式使用间接法求概率 答案 b 2 下列说法正确的是 a 事件a b中至少有一个发生的概率一定比a b中恰有一个发生的概率大b 事件a b同时发生的概率一定比事件a b恰有一个发生的概率小c 互斥事件一定是对立事件 对立事件并不一定是互斥事件d 互斥事件不一定是对立事件 对立事件一定是互斥事件 答案 d 解析 由互斥事件及对立事件的定义知选d 3 从装有2个红球和2个白球的口袋中任取2个球 那么下列事件中 互斥事件的个数是 至少有1个白球与都是白球 至少有1个白球与至少有1个红球 恰有1个白球与恰有2个红球 至少有1个白球与都是红球 a 0b 1c 2d 3 答案 c 解析 中两个事件可以同时发生 中两个事件不可能同时发生 故 中两个事件为互斥事件 选c 4 如图所示 靶子由一个中心圆面 构成 射手命中 的概率分别为0 35 0 30 0 25 则不命中靶的概率是 答案 0 10 解析 射手命中圆面 为事件a 命中圆环 为事件b 命中圆环 为事件c 不中靶为事件d 则a b c互斥 故射手中靶的概率为p a b c p a p b p c 0 35 0 30 0 25 0 90 因为中靶和不中靶是对立事件 故不命中靶的概率为p d 1 p a b c 1 0 90 0 10 5 甲 乙两人下象棋 甲获胜的概率为30 两人下成和棋的概率为50 则乙获胜的概率为 甲不输的概率为 答案 20 80 解析 设事件 甲胜 乙胜 甲乙和棋 分别为a b c 则p a 30 p c 50 甲不输的概率为 p a c p a p c 80 p b 1 p a c 1 80 20 6 在某一时期内 一条河流某处的最高水位在各个范围内的概率如下 计算在同一时期内 河流这一处的年最高水位在下列范围内的概率 1 10 16 m 2 8 12 m 3 14 18 m 解析 记河流年最高水位在 8 10 为事件a 10 12 为事件b 12 14 为事件c 14 16 为事件d 16 18 为事件e 则a b c d e为互斥事件 由互斥事件的概率的加法公式 得 1 最高水位在 10 16 的概率为p b c d p b p c p d 0 28 0 38 0 16 0 82 2 最高水位在 8 12 的概率为p a b p a p b 0 1 0 28 0 38 3 最高水位在 14 18 的概率为p d e p d p e 0 16 0 08 0 24 互斥事件的概念 解析 1 若 两次出现正面 发生 则 只有一次出现正面 不发生 反之亦然 即事件a与b不可能同时发生 a b互斥 2 某人射击一次中靶不一定击中9环 但击中9环一定中靶 即b发生则a一定发生 a b不互斥 3 事件a发生 则事件b一定不发生 故a b互斥 某小组有3名男生和2名女生 从中任选2名同学参加演讲比赛 判断下列每对事件是不是互斥事件 如果是 再判别它们是不是对立事件 1 恰有一名男生与两名全是男生 2 至少有1名男生与全是男生 3 至少有1名男生与全是女生 4 至少有1名男生与至少有1名女生 解析 判别两个事件是否互斥 就是考察它们是否能同时发生 判别两个互斥事件是否对立 就要考察它们是否必有一个发生 1 因为 恰有1名男生 与 两名全是男生 不可能同时发生 所以它们是互斥事件 当两名都是女生时它们都不发生 所以它们不是对立事件 2 因为 两名全是男生 发生时 至少有一名男生 也同时发生 所以它们不是互斥事件 3 因为 至少有一名男生 与 全是女生 不可能同时发生 所以它们互斥 由于它们必有一个发生 所以它们对立 4 由于选出的是 一名男生一名女生 时 至少有一名男生 与 至少有一名女生 同时发生 所以它们不是互斥事件 点评 两个互斥事件是否对立要依据试验条件 本题条件若改成 某小组有3名男生1名女生 任取2人 则 恰有1名男生 与 恰有2名男生 便是对立事件 对立事件的概念 解析 对立事件的含义是 两个事件在一次试验中有且仅有一个发生 类比集合 可用venn图揭示事件之间的关系 1 根据题意作出venn图 从图 1 中可以看到 朝上的一面出现奇数 与 朝上的一面出现偶数 各自所含结果所组成的集合互为补集 因此它们构成对立事件 从一堆产品 其中正品与次品的件数都大于2 中任取2件 下列每对事件是对立事件的是 a 恰好有2件正品与恰好有2件次品b 至少有1件正品与至少有1件次品c 至少1件次品与全是正品d 至少1件正品与全是正品 答案 c 解析 a中的两个事件是互斥事件 但不对立 b中两个事件不互斥 d中两个事件不互斥 c中两个事件互斥且对立 互斥事件与对立事件的概率 在数学考试中 小明的成绩在90分以上的概率是0 18 在80 89分的概率是0 51 在70 79分的概率是0 15 在60 69分的概率是0 09 60分以下的概率是0 07 计算下列事件的概率 1 小明在数学考试中取得80分以上 2 小明考试及格 解析 小明的成绩在80分以上可以看做是互斥事件 80 89分 90分以上 的并事件 小明考试及格可看做是 60 69分 70 79分 80 89分 90分以上 这几个彼此互斥的事件的并事件 又可看做是 不及格 的对立事件 分别记小明的成绩在 90分以上 在 80 89分 在 70 79分 在 60 69分 为事件b c d e 这四个事件彼此互斥 1 小明的成绩在80分以上的概率是p b c p b p c 0 18 0 51 0 69 2 解法一 小明考试及格的概率是p b c d e p b p c p d p e 0 18 0 51 0 15 0 09 0 93 解法二 小明考试不及格的概率是0 07 所以小明考试及格的概率是p a 1 0 07 0 93 小明在数学考试中取得80分以上成绩的概率是0 69 考试及格的概率是0 93 辨析 错误的原因为误认为事件a与事件b互斥 分析 求 至多 至少 型的概率问题时 先理解题意 明确所求事件包含哪些事件 再利用互斥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论