




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12 1两个原理与排列 组合的基本问题 1 某女孩有红 绿 黄 白4件上衣 红 绿 黄 白 黑5条裙子 3双不同的鞋子 5双不同的袜子 某一天要去出行 则不同的穿法种数为 a 17b 300c 280d 150解析 根据分步乘法计数原理知 不同的穿法种数为4 5 3 5 300 种 b 2 有不同的语文书7本 不同的英语书5本 不同的数学书4本 若从中选出不属于同一科目的两本书 则不同的选法种数为种 解析 选语文 英语各一本有7 5 35种选法 选语文 数学各一本有7 4 28种选法 选英语 数学各一本有5 4 20种选法 所以共有35 28 20 83种不同的选法 83 3 有a b c d四个不同的元素 组成没有重复元素的排列的个数有 a 4个b 24个c 48个d 64个解析 按排列中所含元素的个数分为四类 由加法原理得 个 d 4 设集合m a 1 a 10 a n a是m的三元素子集 且至少有两个偶数元素 则这样的集合a的个数有 a 60个b 100个c 120个d 160个解析 因为集合m中有10个元素 5个奇数 5个偶数 故满足条件的有 个 或 个 或 个 故选a a 5 在三张卡片的正反两面上 分别写着数字1和2 4和5 7和8 当将它们并排组成三位数 不同的三位数的个数有 a 48个b 36个c 42个d 32个解析 从三张卡片上选数有 种 进行排列有种 由乘法原理 共有 个 a 1 分类加法计数原理完成一件事 有n类办法 在第1类办法中有m1种不同的方法 在第2类办法中有m2种不同的方法 在第n类办法中有mn种不同的方法 那么完成这件事共有种不同的方法 n m1 m2 m3 mn 2 分步乘法计数原理完成一件事 需要分成n个步骤 做第1步有m1种不同的方法 做第2步有m2种不同的方法 做第n步有mn种不同的方法 那么完成这件事共有种不同的方法 n m1 m2 mn 3 分类和分步的区别分类 完成一件事同时存在n类方法 每一类都能独立完成这件事 各类互不相关 分步 完成一件事须按先后顺序分n步进行 每一步缺一不可 只有当所有步骤完成 这件事才完成 4 排列基础理论 1 排列的定义 从n个不同元素中 任取m m n 个不同元素 按照一定的顺序排成一列 叫做从n个不同元素中取出m个元素的一个排列 2 排列数的定义 从n个不同元素中 任取m m n 个不同元素的所有排列的个数 叫做从n个不同元素中取出m个元素的排列数 用符号表示 3 排列数计算公式 n n 1 n 2 n m 1 其中m n 若m n 排列称为全排列 记为ann 1 2 3 n 1 n n 称为n的阶乘 规定0 1 5 组合基础理论 1 组合的定义 从n个不同元素中 取出m m n 个不同元素组成一组 叫做从n个不同元素中取出m个元素的一个组合 2 组合数的定义 从n个不同元素中 取出m m n 个不同元素的所有组合的个数 叫做从n个不同元素中取出m个元素的组合数 用符号cnm表示 3 组合数计算公式 cnm 规定cn0 1 4 组合数的两个性质 cnm cnn m cn 1m cnm cnm 1 6 排列与组合的区别排列与组合的共同点是 从n个不同元素中 任取m个不同元素 而不同点是排列要 按照一定的顺序排成一列 而组合却是 只需组成一组 与顺序无关 因此 有序 与 无序 是排列与组合的重要标志 有序 为排列问题 无序 为组合问题 考点1 利用两个计数原理求方法数例题1 1 现要排一份5天的值班表 每天有一人值班 共有5人 每人可以多天值班或不值班 但相邻两天不准由同一人值班 问此值班表共有种不同排法 2 三角形的三边长均为整数 且最长的边长为11 则这样的三角形的个数有 a 25个b 26个c 36个d 37个 解析 1 值班表须依题设一天一天的分步完成 第一天有5人可选 有5种排法 第二天不能用第一天的人 有 种排法 同理 第三天 第四天 第五天也有 种 故由分步计数原理排值班表共有5 4 4 4 4 1280种 应填1280 2 设另两边长为x y 且1 x y 11 x y z 构成三角形 则x y 12 当y取11时 x 1 2 3 11 有11个 当y取10时 x 2 3 10 有9个 当y取9时 x 3 4 9 共7个 当y取6时 x也只能为6 有1个 故满足题设的三角形共有 11 9 7 5 3 1 36个 故选c 点评 1 是分步问题 用分步计数原理 2 是分类问题 用分类计数原理 考点2 排列 组合数方程问题例题2 解下列方程 1 解析 根据排列的意义及公式得 4 2x 13 x 2x 1 2x 2x 1 2x 2 140 x x 1 x 2 则有x 3 4x 23 x 3 0 解之并检验得x 3 2 解析 由组合数的性质可得 又所以 即所以所以5 x 2 x 3 经检验知x 3 点评 凡遇到解排列 组合的方程 不等式问题时 应首先应用性质和排列 组合的计算公式进行变形与化简 并注意有关解排列 组合的方程 不等式问题 最后结果都需要检验 考点3 结合两个计数原理求排列 组合问题的方法数例题3 用0 1 2 3 4这五个数字 可以组成多少个满足下列条件的没有重复数字的五位数 1 比21034大的偶数 2 左起第二位 第四位是奇数的偶数 解析 1 方法一 可分五类 当末位数字是0 而首位数字是2 有 个 当末位数字是0 而首位数字是3或 有 个 当末位数字是2 而首位数字是3或4 有 个 当末位数字是4 而首位数字是2 有 个 当末位数字是4 而首位数字是3 有 个 故有6 12 12 3 6 39 个 方法二 不大于21034的偶数可分为三类 1为万位数字的偶数 有 个 2为万位数字 而千位数字是0的偶数 有 个 还有21034本身 而由0 1 2 3 4组成的五位偶数共有 个 故满足条件的五位偶数共有 个 2 方法一 可分两类 0是末位数 有 个 2或4是末位数 有 个 故共有4 4 8 个 方法二 第二位 第四位从奇数1 3中取 有个 首位从2 4中取 有个 余下排在剩下的两位 有个 故共有 个 点评 不同数字的无重复排列是排列问题中的一类典型问题 常见的附加条件有 奇偶数 位数关系及大小关系等 也可有相邻问题 不相邻问题等 解决这类问题的关键是搞清受限条件 然后按特殊元素 位置 的性质分类 这类问题有0参与时 不可忽视它不能排在首位的隐含条件 拓展训练 为了参加学校的元旦文艺会演 某班决定从爱好唱歌的4名男同学和5名女同学中选派4名参加小合唱节目 如果要求男女同学至少各选派1名 那么不同的选派方法有多少种 解析 方法一 按选派的男同学的人数分三类 选派一名男同学 三名女同学有种方法 选派两名男同学 两名女同学有种方法 选派三名男同学 一名女同学有种方法 由分类计数原理 共有不同的选派方法有40 60 20 120种 方法二 在这九名同学中任选四名 有种方法 其中四人都是男同学的有种方法 四人都是女同学的有种方法 因此符合要求的选派方法有126 1 5 120种 点评 有限制条件的组合应用题的限制条件主要表现在被选出的元素 含 或 不含 某些元素 或是 至少 至多 等类型的组合问题 对于这类组合应用题解题的总体思路为 1 用直接法 一般是从整体分类 然后再局部分步 对于较复杂的从若干个集合里选元素的问题 首先应以其中一个集合为基准进行分类 当然 为了使类别尽量少 这个集合里的元素较少为好 分类时要做到不重不漏 也就是各类的并集是全集 任意两类的交集是空集 在合理正确分类的前提下 在每一类中 依据题目的要求进行分步 分步要做到步步连续 各步之间相互独立 2 用间接法 当正面求解较为困难时 也可采用正难则反的思想 用 间接法 求解 但要注意找准对立面 备选题 球台上有4个黄球 6个红球 击黄球入袋记2分 击红球入袋记1分 欲将此 0个球中的4个球击入袋中 但总分不低于5分 则击球方法有几种 解析 设击入黄球x个 红球y个符合要求 则有x y 42x y 5x y n 解得x 1y 3 故共有不同击球方法数为 x 2y 2 x 3y 1 x 4 y 0 点评 本题需运用不等式的知识 确定击入黄球与红球的个数 有时则需利用集合的运算等知识 确定相关元素的个数 再利用排列或组合的知识解决方法种数问题 1 解决应用题时 应分析 要完成做一件什么事 这件事怎样做才可以做好 需要分类还是分步 运用分类计数原理和分步计数原理 关键在于 两方面 认真分析题意 设计合理的求解程序是求解问题的关键 2 如果任何一类办法中的任何一种方法都能完成这件事 即类与类之间是相互独立的 即分类完成 则选用分类计数原理 如果完成一件事要经历几个步骤 即几步 且只有当这些步骤都做完 这件事才能完成 即步与步之间是相互依存 相互连续的 即分步完成 则选用分步计数原理 3 排列与组合的本质区别在于排列不仅取而且排 即与顺序有关 而组合只取出一组即可 与顺序无关 4 注意排列数公式 组合数公式有连乘形式与阶乘形式两种 公式anm n n 1 n m 1 常用于计算 而公式常用于证明恒等式 1 对事件的分步出错 用黄 蓝 白三种颜色粉刷6间办公室 一种颜色粉刷3间 一种颜色粉刷2间 一种颜色粉刷1间 问粉刷这6间办公室 有多少种安排方法 错解 种 错解分析 对题目中的事件分解步骤有错 丢掉了一步 即颜色可以相互转换这一步 而题目中黄 蓝 白三种颜色粉刷办公室的间数不一定 任何一种颜色都可以粉刷3间或2间或1间 因此 三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线上线下彩票业务合作框架协议
- 草牧场承包权流转与农业可持续发展合作协议
- 食品流通市场承包权转让合同范本
- 外债融资担保机构合作协议范本
- 桩基露筋防腐处理技术专题
- 预应力孔道智能压浆监控
- 中职学校教师培训
- 滨水带施工合同定交底
- 智慧用电服务体系建设方案智慧电能服务体系建设方案
- 智慧医院节能监管平台建设方案节约型医院实施方案
- 五年级下学期科学立体小菜园课件
- 2019级药剂专业人才培养方案(中职)
- 2024年河北石家庄市市属国企业春季面向社会公开招聘282人易考易错模拟试题(共500题)试卷后附参考答案
- 旅游集散中心建设设计方案
- 国家开放大学专科《人文英语1》一平台机考真题及答案(第二套)
- 承德市承德县六年级下册数学期末测试卷汇编
- 北京朝阳区2024年八年级物理第二学期期末综合测试试题及答案解析
- 服务标准化指标的量化与评价
- 维修结算单完整版本
- (正式版)JBT 14790-2024 往复式内燃机曲轴转角 信号盘
- 勘察设计工作量及计划安排方案
评论
0/150
提交评论