餐饮业影响因素实证分析.doc_第1页
餐饮业影响因素实证分析.doc_第2页
餐饮业影响因素实证分析.doc_第3页
餐饮业影响因素实证分析.doc_第4页
餐饮业影响因素实证分析.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

餐饮业区域市场潜力的影响因素分析沈枫霄40205020 米积先40205029 马如东40205059 陆峰华40205032 李奎40205001 董根炜40205015 【摘要】众所周知,在我国“西部大开发”发展战略当中,成都和四川的开发占有举足轻重的地位。对于一个企业来说,如果考虑对一个地区进行投资,那么该地区的区域市场潜力将是首要考虑的因素之一。本文旨在对近二十年我国四川省的餐饮业销售额及其影响因素进行实证分析来探索评估区域市场潜力的方法以为公司投资决策做参考。首先,我们综合了几种关于市场需求调查与预测的主要理论观点;进而我们建立了关于四川省餐饮业销售额的理论模型;然后,收集了相关的数据,利用EVIEWS软件对此模型进行了参数估计和检验,并加以修正;最后,我们对所得的分析结果作了经济意义的分析,得出一些结论,并相应提出一些建议。【关键词】 餐饮业零售额 居民消费水平 社会消费品零售总额 人口总数 EVIEWS软件 市场需求 一 引言 我国提出西部开发已经有好几年了,现在,大多数行业在发展的同时都会特别提到西部地区的发展情况。西部大开发战略意义重大,其成功与否将直接关系到我国的国际竞争力。而在实施西部大开发战略中,一个非常重要的因素就是发展经济,提高居民购买力,扩大市场需求量。市场需求量的测量是企业制定正确营销战略的前提条件。在激烈市场竞争中,如果哪家企业能正确估计当前的市场需求并把握未来需求的态势,那么该企业就能掌握市场变化的主动权,从而在竞争中求得生存和发展。在企业的具体实践中,可以依据测量对象在发生时间上的不同,把居民购买力水平分为两大类型,即对目前需求的估量和对未来需求的预测。而我们建模的目的就是通过对四川省某行业(餐饮业)的消费进行调查和预测以便于任何一家四川省的该行业企业或打算对四川该行业进行投资的企业做决策。另外,就某一行业分析,近几年四川省餐饮业市场红火。今年以来,四川省政府各级有关部门切实做好了禽流感的预防、监测和控制工作,能够保证让市民放心消费,禽流感对餐饮市场影响不大。城乡居民生活水平不断提高和生活节奏的加快,外出休闲就餐的居民不断增加,同时,一些餐饮业企业进一步增强创新经营观念,突出个性经营和品牌理念,提高服务质量,从而吸引大量的消费者,促进了四川省餐饮业的进一步发展。因此,我们选择四川省的餐饮业进行建模。二 经济理论陈述本次建模我们主要运用市场需求理论,下面进行具体陈述:(1) 市场需求的层次在市场营销活动中常谈到一个产品是否“有市场”。营销中有四个市场名词:潜在市场、有效市场、服务市场和渗透市场。这四个不同的市场名词各代表不同的含义及大小。依市场需求量的大小,其关系可表示为: 潜在市场=有效市场=服务市场=渗透市场对于市场的层次来说,各类市场的层次是不尽相同的,它们各自在总体市场上占有不同的比例。(2) 市场需求调查中的“需求”的含义某产品的市场需求,通常是指在特定的地理区域、特定的时间、特定的营销环境中,由特定的消费者购买的总量。(3) 市场需求的基本内容 市场需求测量,可以根据测量所要达到的目的及所需的条件从多层次多侧面进行。在企业实践中,可以根据测量对象在发生时间上的不同,把需求测量分为两大类型,即对目前需求的估量和对未来需求的预测。通常情况下,对未来需求的预测比对目前需求的估量要复杂和困难的多,而且预测的时距越长越困难。三 计量经济模型的建立根据上述需求理论中的基本概念,我们分析影响区域市场潜量的主要因素有区域社会消费品零售总额,区域人均消费水平和区域总人口数。由此建立了如下的计量经济学模型: Y=C+1x1+2X2+3x3+Ui其中Y 表示四川省餐饮业零售额,x1表示四川省人均消费水平,x2表示社会消费品零售总额,x3表示四川省人口数,单位分别为万元、元/人、万元和万人。C、1、2、3表示要估计的参数,Ui表示随机扰动向扰动项,代表了影响Y的其他因素。四 相关数据收集1 数据来源说明:本文数据除1986年外均摘自1998年四川统计年(因1986年数据缺失,而采用了1991年四川统计年鉴的86年数据进行换算),数据口径基本一致。2 数据的收集情况:采用时间序列数据(19781997),具体情况见附表1。五 模型的参数估计、检验及修正 1. 模型的参数估计及其经济意义、统计推断的检验 我们用EVIEWS软件和最小二乘法对数据进行回归分析(见附表二),可得方程如下: Y = 1861350 - 437.6427X1 + 0.1921X2 265.5488X3 + Ui (391927.4) (321.9169) (0.053366) (54.17442) t=(4.749222) (-1.35949 ) (3.599652) (-4.901738) R2 =0.986064 F=377.3720由F=377.372F0.05(3,16)=3.24(显著性水平a=0.05),表明模型从整体上看四川省餐饮销售量与解释变量之间线性关系显著。但X1,X3系数的符号与经济意义相悖,从经济意义上讲,餐饮业区域销售量应随着区域总人口和区域人均消费水平的增加而增加。我们对上述模型进行计量经济学的检验,并进行修正,看是否能使模型方程得到改进。2. 计量经济学检验 (1)多重共线性检验用EVIEWS软件,得相关系数矩阵表X1X2X3X1 1.000000 0.998618 0.892967X2 0.998618 1.000000 0.886325X3 0.892967 0.886325 1.000000由上表可以看出,解释变量X1与X2 、X1与X3 、 X2与X3之间的相关系数都较大,可见存在严重的多重共线性。在经济意义上,人均消费水平,区域社会消费品零售总额,人口多寡都与经济的发展密切相关,这使得他们之间的相关性很强。下面我们利用逐步回归法(变量剔除法)进行修正(见附表三、四、五): Y=2025316.+ 0.119993x2-289.3563x3t (5.3005) (19.8602) (-5.5085)R2=0.9845 F=538.2767Y=-58298.9 +0.251898x2-947.7207x1(-2.4730) (3.1598) (-2.0274)R2=0.9651 F=235.3099Y=-77977.08 +0.0905x2(-3.3515) (19.9442) R2=0.9567 F=397.7711此时,修正可决系数开始下降,但所有参数的t值都已经比较显著,故不再删除变量,选择此模型为修正后的模型。(2)异方差检验(Goldfeld-Quandt检验,具体数据见附表六,七)在procs中选定sort series,键入x2.。在sample中定义时间为19781985,然后用ols法求得:Y=22801.01+0.038768x2 (8733.607) (0.007029) R2=0.835241 e12=3.36e+08Y-277572.8+0.113425x2 (75883.50) (0.009234)R2=0.967922 e22=2.65e+10求F统计量: Fe22/e1278.86905在给定显著性水平a0.05时,比较得F78.869054.28,则表明存在异方差。下面我们用对数变换法进行修正(见附表八)修正后的方程为:Y -4.159209+1.091890x2 (0.707612) (0.047738)R20.966738 F523.1632此时,异方差性得到削弱,参数估计精度有所提高,修正可决系数及F值也稍有提高。(3)自相关检验由附表八得d0.400126,在显著水平=0.05下,查表 n=20,k=1时,DL =1.201,du=1.411,由于d=0.400126DL=1.201,表明该模型中的误差序列存在一阶自相关。下面用广义差分法进行修正,由d=0.400126,计算出=1-d/2=0.799937,构造差分模型并估计,得 DLY=-1.746574+1.387530DLX2 t=(-4.347077) (10.72852) =0.863741 F=115.1101 DW=1.996049发现经过广义差分法修正后,DW值有所提高,不存在自相关六 结论可见,由模型得出,尽管从经济背景分析来看,居民人均消费水平和区域人口总数会影响区域餐饮业销售额,但实证分析表明,四川省餐饮业销售额主要取决于四川省社会消费品零售总额。 附表1obsY(万元)X1(元/人)X2(万元)X3(万人)197841245149.936158377071.9197960989163.287740587120.5198051175184.868790907154.8198169097201.5711913317215.6198273262213.9312631397300.4198380374239.1213857667336.9198494153272.2616233427364.0198579348320.4417400257419.3198696034342.9220177547511.91987117778395.9823184037613.21988151113491.5330055357716.41989170102555.7732841987803.21990195884654.2033986517892.51991220437712.9938772337947.81992259679800.1845342597992.21993342233997.8755484678037.419944762641330.1972474088098.719956984351610.0893636518161.219969425131859.92109144858215.4199711980652050.00121236998264.7附表2Dependent Variable: YMethod: Least SquaresDate: 05/20/05 Time: 22:44Sample: 1978 1997Included observations: 20VariableCoefficientStd. Errort-StatisticProb. C1861350.391927.44.7492220.0002X1-437.6427321.9169-1.3594900.1928X20.1921000.0533663.5996520.0024X3-265.548854.17442-4.9017380.0002R-squared0.986064 Mean dependent var270909.0Adjusted R-squared0.983451 S.D. dependent var320910.0S.E. of regression41282.61 Akaike info criterion24.27113Sum squared resid2.73E+10 Schwarz criterion24.47027Log likelihood-238.7113 F-statistic377.3720Durbin-Watson stat1.165475 Prob(F-statistic)0.000000附表3Dependent Variable: YMethod: Least SquaresDate: 05/21/05 Time: 09:43Sample: 1978 1997Included observations: 20VariableCoefficientStd. Errort-StatisticProb. C2025316.382098.25.3005120.0001X20.1199930.00604219.860150.0000X3-289.356352.52932-5.5084720.0000R-squared0.984454 Mean dependent var270909.0Adjusted R-squared0.982625 S.D. dependent var320910.0S.E. of regression42299.97 Akaike info criterion24.28044Sum squared resid3.04E+10 Schwarz criterion24.42980Log likelihood-239.8044 F-statistic538.2767Durbin-Watson stat0.947258 Prob(F-statistic)0.000000附表4Dependent Variable: YMethod: Least SquaresDate: 05/21/05 Time: 13:30Sample: 1978 1997Included observations: 20VariableCoefficientStd. Errort-StatisticProb. C-58298.9023574.56-2.4729580.0243X1-947.7207467.4451-2.0274480.0586X20.2518980.0797193.1598140.0057R-squared0.965137 Mean dependent var270909.0Adjusted R-squared0.961035 S.D. dependent var320910.0S.E. of regression63346.03 Akaike info criterion25.08809Sum squared resid6.82E+10 Schwarz criterion25.23745Log likelihood-247.8809 F-statistic235.3099Durbin-Watson stat0.671669 Prob(F-statistic)0.000000附表5Dependent Variable: YMethod: Least SquaresDate: 05/21/05 Time: 09:52Sample: 1978 1997Included observations: 20VariableCoefficientStd. Errort-StatisticProb. C-77977.0823266.21-3.3515160.0036X20.0904950.00453719.944200.0000R-squared0.956707 Mean dependent var270909.0Adjusted R-squared0.954302 S.D. dependent var320910.0S.E. of regression68601.39 Akaike info criterion25.20465Sum squared resid8.47E+10 Schwarz criterion25.30423Log likelihood-250.0465 F-statistic397.7711Durbin-Watson stat0.433612 Prob(F-statistic)0.000000附表6Method: Least SquaresDate: 05/21/05 Time: 22:31Sample: 1978 1985Included observations: 8VariableCoefficientStd. Errort-StatisticProb. C22801.018733.6072.6107210.0401X20.0387680.0070295.5151530.0015R-squared0.835241 Mean dependent var68705.38Adjusted R-squared0.807782 S.D. dependent var17066.46S.E. of regression7482.401 Akaike info criterion20.89081Sum squared resid3.36E+08 Schwarz criterion20.91067Log likelihood-81.5633 F-statistic30.41691Durbin-Watson stat2.422685 Prob(F-statistic)0.001494附表七Dependent Variable: LYMethod: Least SquaresDate: 05/21/05 Time: 22:10Sample(adjusted): 1993 1997Included observations: 5 after adjusting endpointsConvergence achieved after 11 iterationsVariableCoefficientStd. Errort-StatisticProb. C-11.18159.763849-1.145190.3707LX21.538980.6107422.5198540.128AR(2)-0.207652.81146-0.073860.9478R-squared0.987795 Mean dependent var13.40522Adjusted R-squared0.97559 S.D. dependent var0.505785S.E. of regression0.079023 Akaike info criterion-1.95445Sum squared resid0.012489 Schwarz criterion-2.18878Log likelihood7.886116 F-statistic80.93232Durbin-Watson stat1.413427 Prob(F-statistic)0.012205附表八Dependent Variable: LYMethod: Least SquaresDate: 05/21/05 Time: 22:46Sample: 1978 1997Included observations: 20VariableCoefficientStd. Errort-StatisticProb. C-4.159210.7076

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论