高中数学 第一部分 第一章 §3 3.1 第一课时 等比数列的概念及通项公式课件 北师大版必修5.ppt_第1页
高中数学 第一部分 第一章 §3 3.1 第一课时 等比数列的概念及通项公式课件 北师大版必修5.ppt_第2页
高中数学 第一部分 第一章 §3 3.1 第一课时 等比数列的概念及通项公式课件 北师大版必修5.ppt_第3页
高中数学 第一部分 第一章 §3 3.1 第一课时 等比数列的概念及通项公式课件 北师大版必修5.ppt_第4页
高中数学 第一部分 第一章 §3 3.1 第一课时 等比数列的概念及通项公式课件 北师大版必修5.ppt_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 1等比数列 理解教材新知 把握热点考向 应用创新演练 第一章数列 考点一 考点三 考点二 第一课时等比数列的概念及通项公式 知识点一 知识点二 知识点三 3 1等比数列 第一课时等比数列的概念及通项公式 问题1 这几个数列 从相邻项的关系上看 有什么共同特征 提示 从第2项起 每一项与前一项的比是同一个常数 等比数列的定义及通项公式 第2项 同一个常数 这个常数 an a1qn 1 问题1 若数列2 a 4 b 为等比数列 a b的值分别是什么 问题2 在问题1的条件下 a 4 b存在的关系是什么 提示 42 ab 等比中项 问题 以上五个数列各有怎样的增减性 提示 递减数列 常数列 递增数列 递增数列 递减数列 递减数列 递增数列 递增数列 递减数列 1 对等比数列定义的理解应注意以下几点 1 等比数列每一项都可能作分母 故每一项均不能为0 因此q也不能为0 2 必须是 从第2项起 每一项与它前一项的比都等于同一个常数 3 一个数列从第2项起 每一项与它前一项的比是常数 这个数列不一定是等比数列 定义中 同一个 常数非常重要 切不可丢掉 4 非零常数列既是等差数列 又是等比数列 2 等比数列的增减性既与首项有关 也与公比q有关 3 在a b同号时 a与b才有等比中项 而且有两个 它们互为相反数 若a b异号时 a与b没有等比中项 思路点拨 将已知条件转化为a1和q的方程或方程组 通过解方程或方程组求解a1 q 进而解决其他问题 一点通 1 求等比数列通项公式的方法 1 方程组法 用a1 q表示出已知两项 联立方程组 解方程组 得出a1 q 写出通项公式 2 通项公式变形法 观察已知两项是否有关系 用an am qn m n m n 来联系这两项 写出通项公式 2 在等比数列通项公式an a1qn 1中 含有首项a1 第n项an 公比q 项数n四个量 如果知道其中的三个 便可求出另外一个 3 在通项公式的有关计算中 要注意使用函数与方程及整体代换的思想的应用 解析 由通项公式得a1q5 aq3 又a1 2 q2 4 又an 0 q 2 答案 c 31 答案 a 3 已知等比数列 an 中 a5 20 a15 5 求a20 例2 已知数列 an 满足a1 1 an 1 2an 1 1 证明 数列 an 1 是等比数列 2 求数列 an 的通项公式 2 由 1 知 an 1 是以a1 1 2为首项 2为公比的等比数列 an 1 2 2n 1 2n 即an 2n 1 一点通 判断或证明一个数列是等比数列的常用方法是定义 证明时要注意定义中的条件 任何一项不等于0 从第二项起 同一个 常数 4 设数列 an 为等比数列 则下面四个数列 a pan p为非零常数 an an 1 an an 1 中等比数列的个数是 a 1b 2c 3d 4 3n 答案 d 5 已知数列 an 满足 lgan 3n 5 证明 数列 an 是等比数列 例3 有四个数 其中前三个数成等差数列 后三个数成等比数列 并且第一个数与第四个数的和是16 第二个数与第三个数的和是12 求这四个数 思路点拨 根据题意可以设前三个数得第四个数 也可以设后三个数得第一个数 还可以设前两个数得后两个数 然后建立方程组求解 所以 当a 4 d 4时 所求四个数为0 4 8 16 当a 9 d 6时 所求四个数为15 9 3 1 故所求四个数为0 4 8 16或15 9 3 1 12分 7 三个正数成等差数列 它们的和等于15 如果它们分别加上1 3 9就成为等比数列 求这三个数 8 已知四个数 前3个数成等差数列 后三个数成等比数列 中间两个数之积为16 第一个数与第四个数之积为 128 则如何求这四个数 由 得a2 16q 由 得a2 1 q 128 将 代入得 q2 2q 8 0 q 4或q 2 又a2 16q q 0 q 4 a 8 当a 8时 所求四个数分别为 4 2 8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论