




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路 数学 路漫漫其修远兮吾将上下而求索 人教版 必修2 点 直线 平面之间的位置关系 第二章 2 3直线 平面垂直的判定及其性质 第二章 2 3 1直线与平面垂直的判定 1 在初中平面几何中能够转化为垂直关系的有 等腰三角形底边上的中线 底边 菱形对角线互相 正方形对角线互相 圆的直径所对圆角等于 2 在上一节 我们已经学习了直线与平面平行的判定定理和平面与平面平行的判定定理及其应用 线面平行 面面平行的判定最终归结为线线平行的判定 并且研究了线面平行和面面平行的三种判定方法 1 定义法 2 判定定理 3 反证法 知识衔接 垂直平分 垂直平分 垂直平分 90 1 直线与平面垂直 自主预习 任意一条 垂线 垂面 垂足 破疑点 1 定义中的 任意一条直线 这一词语与 所有直线 是同义语 与 无数条直线 不是同义语 2 直线与平面垂直是直线与平面相交的一种特殊形式 3 由直线与平面垂直的定义 得如果一条直线垂直于一个平面 那么这条直线垂直于该平面内的任意一条直线 2 判定定理 相交 a b p 垂直 破疑点 直线与平面垂直的判定定理告诉我们 可以通过直线间的垂直来证明直线与平面垂直 通常我们将其记为 线线垂直 则线面垂直 因此 处理线面垂直转化为处理线线垂直来解决 也就是说 以后证明一条直线和一个平面垂直 只要在这个平面内找到两条相交直线和已知直线垂直即可 3 直线和平面所成的角 1 定义 一条直线和一个平面 但不和这个平面 这条直线叫做这个平面的斜线 斜线和平面的 叫做斜足 过斜线上斜足以外的一点向平面引 过 和 的直线叫做斜线在这个平面上的射影 平面的一条斜线和它在平面上的射影所成的 叫做这条直线和这个平面所成的角 相交 垂直 交点 垂线 垂足 斜足 锐角 90 0 1 直线l 平面 直线m 则l与m不可能 a 平行b 相交c 异面d 垂直 答案 a 解析 直线l 平面 l与 相交 又 m l与m相交或异面 由直线与平面垂直的定义 可知l m 故l与m不可能平行 预习自测 2 直线l与平面 内的无数条直线垂直 则直线l与平面 的关系是 a l和平面 相互平行b l和平面 相互垂直c l在平面 内d 不能确定 答案 d 解析 如下图所示 直线l和平面 相互平行 或直线l和平面 相互垂直或直线l在平面 内都有可能 故选d 3 如右图所示 若斜线段ab是它在平面 上的射影bo的2倍 则ab与平面 所成的角是 a 60 b 45 c 30 d 120 答案 a 点评 垂线段 斜线段及其射影构成直角三角形 4 如下图所示 在正方体abcd a1b1c1d1中 求证 ac 平面bdd1b1 分析 转化为证明ac bd ac bb1 证明 bb1 ab bb1 bc bb1 平面ac 又ac 平面ac bb1 ac 又四边形abcd是正方形 bd ac 又bd 平面bdd1b1 bb1 平面bdd1b1 bb1 bd b ac 平面bdd1b1 如图 p为 abc所在平面外一点 pa 平面abc abc 90 ae pb于e af pc于f 求证 1 bc 平面pab 2 ae 平面pbc 3 pc 平面aef 线面垂直的判定 互动探究 探究 本题是证线面垂直问题 要多观察题目中的一些 垂直 关系 看是否可利用 如看到pa 平面abc 可想到pa ab pa bc pa ac 这些垂直关系我们需要哪个呢 我们需要的是pa bc 联系已知 问题得证 证明 1 pa 平面abc bc 平面abc pa bc abc 90 ab bc 又ab pa a bc 平面pab 2 bc 平面pab ae 平面pab bc ae pb ae bc pb b ae 平面pbc 3 ae 平面pbc pc 平面pbc ae pc af pc ae af a pc 平面aef 规律总结 线面垂直的判定定理的应用 1 利用直线与平面垂直的判定定理判定直线与平面垂直的步骤 在这个平面内找两条直线 使它和这条直线垂直 确定这个平面内的两条直线是相交的直线 根据判定定理得出结论 2 利用直线与平面垂直的判定定理判定直线与平面垂直的技巧 证明线面垂直时要注意分析几何图形 寻找隐含的和题目中推导出的线线垂直关系 进而证明线面垂直 三角形全等 等腰三角形 梯形底边的中线 高 菱形 正方形的对角线 三角形中的勾股定理等都是找线线垂直的方法 如图 在 abc中 abc 90 d是ac的中点 s是 abc所在平面外一点 且sa sb sc 1 求证 sd 平面abc 2 若ab bc 求证 bd 平面sac 探究 题设条件中的三棱锥的三条侧棱相等 ab bc d是ac的中点 要证 1 需在平面abc内找两条相交直线与sd垂直 故等腰三角形底边的中线是可以利用的垂直关系 要证 2 需设法在平面sac内找两条相交直线与bd垂直 而 1 的结论可利用 证明 1 因为sa sc d是ac的中点 所以sd ac 在rt abc中 ad bd 由已知sa sb 所以 ads bds 所以sd bd 又ac bd d 所以sd 平面abc 2 因为ab bc d为ac的中点 所以bd ac 由 1 知sd bd 又因为sd ac d 所以bd 平面sac 规律总结 利用直线与平面垂直的判定定理证明直线与平面垂直的步骤 1 在这个平面内找两条直线 使它和这条直线垂直 2 确定这个平面内的两条直线是相交的直线 3 根据判定定理得出结论 在正方体abcd a1b1c1d1中 1 求直线a1c与平面abcd所成的角的正切值 2 求直线a1b与平面bdd1b1所成的角 线面角 探究 求线面角的关键是找出直线在平面内的射影 为此须找出过直线上一点的平面的垂线 2 中过a1作平面bdd1b1的垂线 该垂线必与b1d1 bb1垂直 由正方体的特性知 直线a1c1满足要求 规律总结 求线面角的方法 1 求直线和平面所成角的步骤 寻找过斜线上一点与平面垂直的直线 连接垂足和斜足间得到斜线在平面上的射影 斜线与其射影所成的锐角或直角即为所求的角 把该角归结在某个三角形中 通过解三角形 求出该角 2 求线面角的技巧 在上述步骤中 其中作角是关键 而确定斜线在平面内的射影是作角的关键 几何图形的特征是找射影的依据 射影一般都是一些特殊的点 比如中心 垂心 重心等 答案 d 如图 四棱锥p abcd中 底面abcd为矩形 pd 底面abcd ad pd e f分别为cd pb的中点 1 求证 ef 平面pab 线面垂直的综合应用 探索延拓 探究 1 要证线面垂直 需证平面内有两条相交直线与已知直线垂直 而根据条件易得ef pb ef af 所以本题得证 2 要求线面角 得先找出或作出这个角 根据条件易得bp 平面efa 故在 bef中 只需过ac与be的交点g作bf的平行线gh 则gh 平面efa gah为所求角 解析 1 证明 连结be ep ed ce pd ad bc rt pde rt bce pe be f为pb中点 ef pb pd 底面abcd da ab pa ab 在rt pab中 pf bf pf af 又 pe be ea efp efa ef fa pb af f ef 平面pab 规律总结 1 中还可取ab中点q 连结eq fq 证明ab 平面efq 则ab ef 加上ef pb 则ef 平面pab 2 中在求线面角时 首先得找出或作出这个角 再解三角形求角 如图 ab为 o的直径 pa垂直于 o所在的平面 m为圆周上任意一点 an pm n为垂足 1 求证 an 平面pbm 2 若aq pb 垂足为q 求证 nq pb 探究 根据pa 平面abm 证得bm 平面pam 再利用线面垂直的判定定理证明an 平面pbm 而证线线垂直 可先证线面垂直 证明 1 ab为 o的直径 am bm 又pa 平面abm pa bm 又 pa am a bm 平面pam 又an 平面pam bm an 又an pm 且bm pm m 又an 平面pbm 2 由 1 知an 平面pbm pb 平面pbm an pb 又 aq pb an aq a pb 平面anq 又nq 平面anq pb nq 规律总结 证明线面垂直时 在平面内找两条相交直线是关键 同时注意判定定理的条件 已知四边形abcd中 四个角 abc bcd cda dab都是直角 求证 四边形abcd是矩形 错解 四边形abcd中 四个角 abc bcd cda dab都是直角 四边形abcd是矩形 错因分析 把abcd当作平面四边形 未加共面证明 就得出结论 易错点一在几何题的证明中 只考虑平面情形 而忽略空间情形 误区警示 思路分析 四边形abcd有两种存在形式 平面四边形abcd和空间四边形abcd 需分类证明 正解 当四边形abcd是平面图形时 它显然是矩形 若四边形abcd是空间四边形时 可设点c在平面abd之外 如图 过点c作cc1 平面abd 则ab 面bcc1 abc1 90 同理 adc1 90 如图所示 a b 点p在a b所确定的平面外 pa a于点a ab b于点b 求证pb b 错解 pa a a b pa b pa 平面 pb b 错因分析 上述证法的错误在于没有正确使用线面垂直的判定定理 由pa a pa b 得pa 忽略了a与b不相交 正解 pa a a b pa b 又 ab b 且pa ab a b 平面pab 又 pb 平面pab pb b 1 若直线a与平面 内的两条直线垂直 则直线a与平面 的位置关系是 a 垂直b 平行c 斜交或在平面内d 以上均有可能 答案 d 解析 a与 内的两条直线垂直 而这两条直线的位置关系不确定 a与 可能平行 垂直 斜交或a在 内 2 如果一条直线垂直于一个平面内的 三角形的两边 梯形的两边 圆的两条直径 正六边形的两条边 则能保证该直线与平面垂直 a b c d 答案 a 解析 三角形的两边 圆的两条直径一定是相交直线 而梯形的两边 正六边形的两条边不一定相交 所以保证直线与平面垂直的是 3 下列命题中正确的个数是 如果直线l与平面 内的无数条直线垂直 则l 如果直线l与平面 内的一条直线垂直 则l 如果直线l不垂直于 则 内没有与l垂直的直线 如果直线l不垂直于 则 内也可以有无
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全生产事故案例考试题含答案集
- 2025年安全员C证复审核心题库题
- 2025年会计类司法鉴定人助理笔试模拟题库
- 2025年安全管理面试题库及答案解析大全
- 2025年人力资源管理师职业能力认证考试试题及答案解析
- 2025年旅游商品经营管理师资格认证试题及答案解析
- 2025年农业生态修复技术项目规划技术员招聘面试题与答案
- 2025年宠物行业初级管理面试题
- 2025年计算机网络工程师资格认证考试试题及答案解析
- 2025年设备使用安全知识竞赛题库
- 职场心理健康课件
- 2025年苏教版新教材数学二年级上册教学计划(含进度表)
- 2025至2030中国舆情大数据行业市场深度调研及投资前景报告
- 高三职业生涯规划课件
- 铅锌行业规范条件 (一)
- 高一2024岳阳期末数学试卷
- 2025秋人教版(2024)八年级上册地理 【教学课件】1.3《民族》
- 创伤骨科慢性难愈性创面诊疗指南(2023版)解读课件
- 义务教育物理课程标准(2022年版)
- 施工项目会议管理制度
- 2025至2030年中国石油石化装备制造行业市场现状分析及投资前景研判报告
评论
0/150
提交评论