




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
答案 b 2 2012 重庆高考 设函数f x 在r上可导 其导函数为f x 且函数f x 在x 2处取得极小值 则函数y xf x 的图象可能是 解析 由函数f x 在x 2处取得极小值可知x 2 f x 0 则xf x 0 x 2 f x 0 则 2 x 0时xf x 0 x 0时xf x 0 选c 答案 c 3 2012 陕西高考 设函数f x xex 则 a x 1为f x 的极大值点b x 1为f x 的极小值点c x 1为f x 的极大值点d x 1为f x 的极小值点 解析 f x xex f x ex xex 令f x 0 则x 1 当x 1时f x 0 当x 1时f x 0 所以x 1为f x 极小值点 故选d 答案 d 4 文 2012 福建高考 已知f x x3 6x2 9x abc a b c 且f a f b f c 0 现给出如下结论 f 0 f 1 0 f 0 f 1 0 f 0 f 3 0 f 0 f 3 0 其中正确结论的序号是 a b c d 解析 f x x3 6x2 9x abc f x 3x2 12x 9 令f x 0则x 1或x 3 当x 1时f x 0 当1 x 3时f x 0 当x 3时f x 0 所以x 1时f x 有极大值 当x 3时f x 有极小值 函数f x 有三个零点 f 1 0 f 3 0 且a 1 b 3 c 又 f 3 27 54 27 abc abc 0 即a 0 因此f 0 f a 0 f 0 f 1 0 f 0 f 3 0 故选c 答案 c 答案 c 5 2012 江苏高考改编 已知a b是实数 1和 1是函数f x x3 ax2 bx的两个极值点 则a b 解析 由f x x3 ax2 bx 得f x 3x2 2ax b 1和 1是函数f x x3 ax2 bx的两个极值点 f 1 3 2a b 0 f 1 3 2a b 0 解得a 0 b 3 答案 a 0 b 3 1 导数的符号与函数的单调性 1 如果在某个区间内 函数y f x 的导数 则在这个区间内 函数y f x 是递增的 2 如果在某个区间内 函数y f x 的导数 则在这个区间内 函数y f x 是递减的 f x 0 f x 0 1 f x 0是f x 在 a b 内单调递增的充要条件吗 提示 函数f x 在 a b 内单调递增 则f x 0 f x 0是f x 在 a b 内单调递增的充分不必要条件 2 函数的极值 1 极大值点与极大值在包含x0的一个区间 a b 内 函数y f x 在任何一点的函数值都x0点的函数值 称为函数y f x 的极大值点 其函数值为函数的极大值 2 极小值点与极小值在包含x0的一个区间 a b 内 函数y f x 在任何一点的函数值都x0点的函数值 称x0为函数y f x 的极小值点 其函数值为函数的极小值 不大于 x0 f x0 不小于 f x0 3 极值与极值点与统称极值 与统称为极值点 2 极值点一定是最值点 这句话对吗 提示 函数的极值表示函数在一点附近的情况 是在局部对函数值的比较 函数的最值是表示函数在一个区间上的情况 是对函数在整个区间上的函数值的比较 函数的极值不一定是最值 最值点也不一定是极值点 极大值 极小值 极大值点 极小值点 3 求函数最值的步骤第一步 求函数的 第二步 极值点与函数值进行比较 第三步 得出结论 极值点 端点 2012 全国大纲高考 设函数f x ax cosx x 0 讨论f x 的单调性 思路点拨 本题考查了导数与函数单调性的关系 要注意对a的讨论 2 当a 0时 f x 0 且仅当a 0 x 0或x 时 f x 0 所以f x 在 0 是减函数 3 当0 a 1时 由f x 0解得x1 arcsina x2 arcsina 当x 0 x1 时 sinx a f x 0 f x 是增函数 当x x1 x2 时 sinx a f x 0 f x 是减函数 当x x2 时 sinx a f x 0 f x 是增函数 归纳提升 1 求可导函数单调区间的一般步骤和方法 1 确定函数f x 的定义域 2 求f x 令f x 0 求出它们在定义域内的一切实根 3 把函数f x 的间断点 即f x 的无定义点 的横坐标和上面的各实数根按由小到大的顺序排列起来 然后用这些点把函数f x 的定义区间分成若干个小区间 4 确定f x 在各个开区间内的符号 根据f x 的符号判定函数f x 在每个相应小开区间内的增减性 2 证明可导函数f x 在 a b 内的单调性的步骤 1 求f x 2 确认f x 在 a b 内的符号 3 作出结论 f x 0时f x 为增函数 f x 0时f x 为减函数 3 已知函数的单调性 求参数的取值范围 应注意函数f x 在 a b 上递增 或递减 的充要条件应是f x 0 或f x 0 x a b 恒成立 且f x 在 a b 的任意子区间内都不恒等于0 这就是说 函数f x 在区间上的增减性并不排斥在区间内个别点处有f x0 0 甚至可以在无穷多个点处f x0 0 只要这样的点不能充满所给区间的任何一个子区间 2012 江苏高考 若函数y f x 在x x0处取得极大值或极小值 则称x0为函数y f x 的极值点 已知a b是实数 1和 1是函数f x x3 ax2 bx的两个极值点 1 求a和b的值 2 设函数g x 的导函数g x f x 2 求g x 的极值点 思路点拨 根据极值点时导函数为0求解a b的值 尝试解答 1 由f x x3 ax2 bx 得f x 3x2 2ax b 1和 1是函数f x x3 ax2 bx的两个极值点 f 1 3 2a b 0 f 1 3 2a b 0 解得a 0 b 3 2 由 1 得 f x x3 3x g x f x 2 x3 3x 2 x 1 2 x 2 解得x1 x2 1 x3 2 当x 2时 g x 0 当 2 x 1时 g x 0 x 2是g x 的极小值点 当 2 x 1或x 1时 g x 0 x 1不是g x 的极值点 g x 的极小值点是 2 2012 北京高考 已知函数f x ax2 1 a 0 g x x3 bx 1 若曲线y f x 与曲线y g x 在它们的交点 1 c 处有公共切线 求a b的值 2 当a2 4b时 求函数f x g x 的单调区间 并求其在区间 1 上的最大值 思路点拨 先化简再求导 找出单调性 注意对a的讨论 得到最值 尝试解答 1 由 1 c 为公共切点可得 f x ax2 1 a 0 则f x 2ax k1 2a g x x3 bx 则g x 3x2 b k2 3 b 2a 3 b 又f 1 a 1 g 1 1 b a 1 1 b 即a b 代入 式可得 归纳提升 1 运用导数求可导函数y f x 的极值的步骤 1 先求函数的定义域 再求函数y f x 的导数f x 2 求方程f x 0的根 3 检查f x 在方程根的左右的值的符号 如果左正右负 那么f x 在这个根处取得极大值 如果左负右正 那么f x 在这个根处取得极小值 2 一般地 在闭区间 a b 上的连续函数f x 必有最大值与最小值 在开区间 a b 内的连续函数不一定有最大值与最小值 若函数y f x 在闭区间 a b 上单调递增 则f a 是最小值 f b 是最大值 反之 则f a 是最大值 f b 是最小值 思路点拨 首先求出f x g x 的定义域 对于 1 按照f x 0 f x 0讨论可得单调递增区间或递减区间 对于 2 转化为g x 0 由恒成立问题解决 对于 3 只需 g x 在 0 1 上的最大值不小于h x 在 1 2 上的最大值 即可 而h x 在 1 2 上的最大值为max h 1 h 2 所以有所以实数m的取值范围是 8 5ln2 思路点拨 构造函数进行不等式的证明 因此 当x 0 e 2 时 h x 0 h x 单调递增 当x e 2 时 h x 0 h x 单调递减 所以h x 的最大值为h e 2 1 e 2 故1 x xlnx 1 e 2 设 x ex x 1 因为 x ex 1 ex e0 所以x 0 时 x 0 x 单调递增 x 0 0 故x 0 时 x ex x 1 0 归纳提升 1 导数的综合既体现了其内在的知识 切线的几何意义 单调性 极值 最值的综合 也体现学科间与函数 方程 不等式等其他知识的结合 也体现了数形结合 函数与方程 分类讨论 等价转化等综合 所以导数成为了现在乃至将来高考的热点内容 高考的压轴内容 2 恒成立 能成立问题不等式恒成立问题的常规处理方式 常应用函数方程思想和 分离变量法 转化为最值问题 也可抓住所给不等式的结构特征 利用数形结合法 1 恒成立问题若不等式f x a在区间d上恒成立 则等价于在区间d上f x min a 若不等式f x a对一切实数x恒成立 则实数a的取值范围为aa成立 则等价于在区间d上f x max a 若在区间d上存在实数x使不等式f x 1 3 设函数f x g x f x 的定义域是d1 g x 的定义域是d2 若 x1 d1 x2 d2 使f x1 g x2 成立 则f x min g x min 若 x1 d1 x2 d2 使f x1 g x2 成立 则f x min g x max 若 x1 d1 x2 d2 使f x1 g x2 成立 则f x max g x max 若 x1 d1 x2 d2 使f x1 g x2 成立 则f x max g x min 3 导数法证明不等式利用导数知识证明不等式是导数应用的一个重要方面 成为了高考的一个新热点 其步骤一般是 构建可导函数 研究单调性或最值 得出不等关系 整理得出结论 其关键是构造适当的函数 判断区间端点函数值与0的关系 4 求解方程根的个数的相关问题利用导数这一工具和数形结合的数学思想解决这类问题的通法是构造函数 并求定义域 求导数 得单调区间和极值点 画出函数草图 数形结合解决 考情全揭密 从近三年高考看 利用导数研究函数的单调性 极值是高考的热点 选择题 填空题侧重于利用导数确定函数的单调性和极值 解答题侧重于导数与函数 解析几何 不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网平台服务合作协议
- 项目管理中的经济数据分析方法试题及答案
- 2025年市政工程环境评估试题及答案
- 分类汇编试题及答案
- 水利水电工程试题及答案详解
- 制胜关键的市政工程试题及答案
- 市政工程课程设置试题及答案
- 水利水电工程在国际合作中的角色及试题及答案
- 过期租房合同后果
- 课程材料采购合同
- 实验 验证牛顿第二定律
- 钻孔水文地质工程地质综合编录一览表模板
- 备用柴油发电机定期启动试验记录表
- 国企食堂运作方案
- 二年级上册心理健康教育说课稿-面对批评 全国通用
- 工程管理检讨书
- 劳务派遣合同示范文本(4篇)
- 2023年广西贺州中考语文真题及答案
- 押运员岗位职责
- 2008年安徽省中考英语试卷及答案
- 眼动的检查与训练
评论
0/150
提交评论