




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
硕士学位论文 基于基于 AdaBoostAdaBoost 和和 SVMSVM 的交通标志识别研究与实现的交通标志识别研究与实现 Research and Implementation of Traffic Sign Recognition Based on Adaboost and SVM IV 论文题目 基于论文题目 基于 AdaBoostAdaBoost 和和 SVMSVM 的交通标志识别研究与实现的交通标志识别研究与实现 摘 要 交通标志的识别是智能交通标志的重要组成部分 它涉及传感器技术 信息技术 自动化技术和计算机等多种技术以及如何识别道路 识别碰撞 识别交通标志等多种 欲识别的对象 经过国内外学者的多年研究 交通标志的识别理论和技术体系已经取 得了突破性的进展 一般来说 交通标志的图像的采集是实现智能交通的第一步 它 对后续的各项操控是否正确有效至关重要 但交通标志全都暴露在特殊的室外环境中 为使驾驶员看清楚各类交通标志 通常交通标志要放在道路旁和管弯处 在这些地方 的交通标志常常容易受到强烈光照 灰尘和树木等多方面的影响 所以图像的清晰度 较差 从而影响摄像机对交通标志的采集 车内的嵌入式计算机软硬件系统所接收的 图像信息也就模糊不清 正因为如此 人们一直都在致力于如何提高交通标志图像识 别率的研究 本论文就如何提高交通标志的识别率进行了一些相关的研究 其研究成 果虽然距离实用还有相当大的距离 但其研究过程是使自己开阔了眼界 增长了知识 提高了业务水平 本文的主要研究内容由以下三部分组成 第一部分 交通标示识别数据集确定 介绍了两种图像预处理方法 结合试验进 行比对分析 综述了三种交通标志检测方法 基于颜色 形状以及综合两种的检测算 法 对各种交通标志特征提取方法进行实验对比分析 实验证明三角形标志和圆形标 志被识别错误的概率最高 第二部分 在研究了现有交通标志识别方法 AdaBoost 和 SVM 的特点后 采用了 一种变的 AdaBoost 技术 综合颜色和形状的交通标志检测方法 子模式组合的特 征提取方法 在子模式的基础上 对比了相邻分块 交叠边缘分块和滑动分块方法和 基于径向基核函数的支持向量机分类器相结合的识别方法来识别常见的交通标志 第三部分 论文采用 MATLAB 软件工具对交通标志识别方法和识别过程进行了 设计实现 包括系统的运行环境 业务流程 系统识别图像过程 获取特征向量过程 并进行仿真的对比分析 结果表明 通过改变有关参数和融合 AdaBoost 和 SVM 的交 通标志的识别方法识别效果更好 识别率更高 关关 键键 词 词 交通标志识别 分块核函数 SVM AdaBoost 论文类型论文类型 应用研究 Title Research and Implementation of Traffic Sign Recognition Based on Adaboost and SVM Specialty Computer Science and Technology 摘 要 V Applicant Xinjun Chen Supervisor Prof Xianglin Miao ABSTRACT Traffic sign recognition is an important part of intelligent traffic signs It involves many kinds of the technology such as sensor technology information technology automation technology and computer technology and how to identify road identification of collision identify the object recognition of traffic signs etc After years of research of scholars both at home and abroad and traffic sign recognition theory and technology system has made breakthrough progress therefore the image collection is the first step to realize intelligent transportation it is very important to the follow up of the manipulation but the traffic signs are all exposed to special outdoor environment to make the drivers see all kinds of traffic signs traffic signs usually should be placed beside the road and pipe bend Where traffic signs are often vulnerable to affect by the strong light dust and various trees so the sharpness of image is bad which affect the camera collection the car s embedded computer software and hardware system of image information is ambiguous Because of this people have been trying to research how to improve the traffic sign image recognition This paper has discussed some related research how to improve the recognition rate of traffic sign although the research results have a considerable distance from the practical but its research process broads the horizons increases of knowledge improves the level of the business The research contents of this paper include In the first part ensures the data sets of traffic sign recognition introduces two methods of image preprocessing compares with the combination of experiment analysis Three traffic sign detection methods are reviewed based on color shape and integrated two detection algorithm In the second part this paper adopt a variable AdaBoost technology comprehensive test method of colors and shapes of traffic signs sub pattern combination method of feature extraction after research the characteristics of SVM and AdaBoost on the basis of subschema compare the edge block and the adjacent block overlapping sliding block method and based on the radial basis kernel function of support vector machine classifier combination of identification methods to identify common traffic signs In the third part the paper uses the MATLAB software tool for traffic sign recognition method and recognition process design and implementation including the system running surroundings the process of business system identification image process obtain VI eigenvector and contrastive analysis of the simulation Results show that change the parameters of several identification methods and the comprehensive recognition effect is better higher recognition rate KEY WORDS Traffic Sign Recognition Block Kernel Function SVM AdaBoost TYPE OF THESIS Applied Research 目 录 VII 目 录 1 绪论 1 1 1 研究的背景和意义 1 1 2 国内外研究现状 2 1 3 论文工作 3 1 4 本文的框架和研究内容 4 2 交通标志识别的实验数据集和图像预处理 5 2 1 实验数据集 5 2 2 交通标志图像预处理 7 2 2 1 随机噪声的消除 7 2 2 2 运动模糊的消除 8 2 3 实验结果 9 2 4 本章小结 11 3 交通标志的检测 12 3 1 基于颜色的交通标志检测 12 3 1 1 RGB 颜色空间模型 12 3 1 2 HIS 颜色空间模型 13 3 2 基于形状的交通标志检测 14 3 3 综合颜色与形状的算法 15 3 4 本章小结 16 4 交通标志的特征提取 17 4 1 基于 BKFDA 的特征提取 17 4 2 基于SPBKFDA 的特征提取 18 4 2 1 spBKFDA 原理 18 4 2 2 算法改进 19 4 3 实验结果和分析 22 4 3 1 基于 BKFDA 特征提取的分类实验 22 4 3 2 基于 spBKFDA 特征分类实验 23 4 4 本章小结 25 5 融合 ADABOOST 和 SVM 的交通标志识别 26 5 1 基于 SVM 的交通标志识别 26 5 1 1 基于 SVM 的线性可分和线性不可分 26 5 1 2 基于 SVM 的多类分类 27 VIII 5 1 3 传统 SVM 存在的不足 29 5 1 4 SVM 算法的改进 29 5 2 基于径向基核函数的 PTSVM 的交通标志识别 32 5 3 融合 ADABOOST和 SVM 的交通标志识别 34 5 3 1 Boosting 算法 34 5 3 2 AdaBoost 算法 35 5 3 3 变 的 AdaBoost 算法 35 5 4 本章小结 38 6 交通标志的识别与运行分析 39 6 1 识别目标及识别内容 39 6 2 交通标志自动识别的仿真实现 39 6 2 1 识别系统的运行环境 39 6 2 2 识别系统的整体流程 40 6 2 3 识别过程的界面 40 6 2 4 识别图像的预处理过程 43 6 2 5 获取识别特征变量的过程 44 6 2 6 图像匹配的过程 45 6 3 仿真识别的结果分析 45 6 3 1 几种识别方法的性能对比 45 6 3 2 PTSVM 性能分析 46 6 3 3 PTSVM 识别 52 6 3 4 三种交通标志识别实验 52 6 4 本章小结 53 7 总结与展望 54 7 1 论文总结 54 7 2 工作展望 54 参考文献 56 致 谢 58 攻读学位期间取得的研究成果 59 声明 CONTENTS IX CONTENTS 1 Introduction 1 1 1 Research Background and Significance 1 1 2 Research Actuality 2 1 3 Technological Difficulty on Traffic Sign Recognition 3 1 4 Thesis Organization and Main Works 4 2 Experiment Data Set and Image Preprocessing of Traffic Sign Recognition 5 2 1 Experiment Data Sets 5 2 2 Traffic Sign Image Preprocessing 7 2 2 1 Random Noise Attenuation of Traffic Sign Images 7 2 2 2 Motion Blurred Attenuation of Traffic Sign Images 8 2 3 Experimental Results 9 2 4 Summary 11 3 Traffic Sign Detection 12 3 1 Traffic Sign Detection Based on Color 12 3 1 1 RGB Color Space Model 12 3 1 2 HIS Color Space Model 13 3 2 Traffic Sign Detection Based on Shape 14 3 3 Traffic Sign Detection Based on Color and Shape 15 3 4 Summary 16 4 Traffic Sign Image Texture Feature Extraction Methods 17 4 1 Feature Extraction Method Based on BKFDA 17 4 2 Feature Extraction Method Based on spBKFDA 18 4 2 1 spBKFDA 18 4 2 2 An Improvement of Chunking 19 4 3 Experimental Results and Analysis 22 4 3 1 Feature Extraction Classification Based on BKFDA 22 4 3 2 Feature Extraction Classification Based on spBKFDA 23 4 4 Summary 25 5 Traffic Sign Recognition by fusion of AdaBoost and SVM 26 5 1 Traffic Sign Recognition Based on SVM 26 5 1 1 Linear Separability and Inseparability Based on SVM 26 5 1 2 SVM Multi Class Classification 27 5 1 3 Defects of Traditional SVM 29 5 1 4 Improvements of SVM 29 5 2 Traffic Sign Recognition Based on RBF PTSVM 32 5 3 Traffic Sign Recognition by fusion of AdaBoost and SVM 34 X 5 3 1 Boosting Algorithm 34 5 3 2 AdaBoost Algorithm 35 5 3 3 AdaBoost Algorithm of Varying 35 5 4 Summary 38 6 Identify the process simulation and operation analysis 39 6 1 Identify the target and recognition 39 6 2 The simulation of the traffic sign automatic recognition system 39 6 2 1 The operation of the recognition system environment 39 6 2 2 The recognition system of the overall process 40 6 2 3 Interface of Identification process 40 6 2 4 Identify the image pretreatment process 43 6 2 5 Access to the process for identifying characteristic variables 44 6 2 6 Image matching process 45 6 3 Result analysis of simulation identify 45 6 3 1Access to the process for identifying characteristic variables 45 6 3 2 The performance analysis of PTSVM 46 6 3 3 Identify of PTSVM 52 6 4 4 Three test of the traffic sign recognition 52 6 4 Summary 53 7 Conclusions and Future Works 54 7 1 Conclusions 54 7 2 Future Works 54 References 56 Acknowledgements 58 Achievements 59 Declaration 1 绪论 1 1 绪论 1 1 研究的背景和意义 改革开放至今已有30多年 在这几十年中随着人民生活水平的日益提高 我国的 交通运输产业也开始高速发展 在城镇化的进程中 机动车的成倍增加导致了城市交 通的日益拥堵 交通事故的频发严重影响到了老百姓的生命财产安全 这就要求我国 的道路交通系统必须提升到更高的层次 近年来 智能交通系统 这一新名词开始 在欧美等发达国家出现 并在全球日益兴起 为了在全国乃至全球范围内实现高效率 大范围的实时交通运输管理 人们建立了智能交通系统 智能交通系统 Intelligent Transport System 简称 ITS 是将传感技术 信息技术 自动化技术 计算机技术及 智能控制技术等先进的技术运用到交通运输管理体系 实现高效率 大范围的交通管 理 ITS 可以保障交通系统的安全运行 提高交通运输效率 其意义因而非常重大 它主要有三方面的应用 1 道路识别 2 碰撞识别 3 交通标志识别 1 国内外研 究学者自上世纪八十年代开始 就对智能交通系统展开了研究 在道路识别和碰撞识 别这两方面已经取得了不错的成绩 甚至已经开始了实际的应用 而在交通标志识别 方面的研究则略显落后 远远达不到实际应用的要求 因此 针对交通标志识别的研 究显得日益紧迫 而目前国内学者对其的研究还不是很多 所以对其研究具有很高的 学术意义 在智能交通系统中 交通标志识别是一个重要的组成部分 随着各国对 ITS 的重 视程度逐渐提高 对交通标志识别的研究也将会逐渐兴起 2 并广泛的应用到实际生 活之中 交通标志识别的研究涉及到概率统计 模式识别 图像处理等多个学科 因 此针对它的研究也能更好的推动其它学科的发展 交通标志的组成包括文字和图像 能够给驾驶员提供道路信息 引导驾驶员进行安全文明驾驶 3 但是很多情况下 驾 驶员会忽视道路上的交通标志 比如开车时打电话 跟车上的人聊天或者限于视角的 限制 如此一来就很容易违反交通规则 发生交通事故 倘若能开发一种交通标志自 动识别软件 将其安装到车辆上作为辅助系统 随时将道路上的交通标志信息传递给 驾驶员 这样就可以减少交通事故的发生 保障驾驶员的生命财产安全 也使得城市 交通更加顺畅 该系统能够随时随地采集和识别道路两旁的交通标志 并及时反馈给 驾驶员 向驾驶员做出警告或指示 因此开展交通标志识别的研究能够对提高道路行 驶安全 缓解交通压力 以及改善交通拥堵状况起到重要的作用 一般通过车辆上的摄像机在室外对交通标志图像进行采集 而不是在室内环境下 因此标志图像容易受到光照 天气等多方面的影响 使得图像的质量不高 从而影响 交通标志的识别率 目前我们需要的是一种识别率高 鲁棒性强的交通标志识别算法 2 因此开展对交通标志识别的研究就显得意义非凡 1 2 国内外研究现状 随着信息化时代的到来 现阶段我国经济建设进入了高速发展期 人民生活水平 也在不断提高 汽车已成为人们追求的家庭必需品 而汽车的大量购置与投入运行 日益导致了城市交通的拥堵 交通事故也频繁发生 已逐渐引起社会的关注 在这样 的背景下 开展交通标志识别研究的重要性日益凸显 利用交通标志识别系统 车辆 可以采集和识别附近的道路交通信息 并及时反馈给驾驶员 达到了安全文明驾驶的 目的 一般采集到的交通标志图像是户外场景下具有复杂背景的图像 这样的图像大多 会受到光照 天气 变形等因素的影响 导致图像质量不高 对这些图像进行交通标 志检测和识别比一般的室内目标要困难的多 4 率先开始进行交通标志检测与识别的国家是日本 他们对此项工作的研究始于 1987 年 5 通过开发一套交通标志识别系统 实现了对限速交通标志的识别 他们采 用了例如模板匹配这样经典的识别算法 平均识别时间为 0 5 秒左右 1992 年 针对法国的交通标志 著名的研究学者 Saint Blancard 6 设计一个红色交 通标志识别系统 利用边缘检测的方法 对标志的边缘信息 颜色滤波以及检测闭合 曲线进行检测 然后 对目标采用神经网络方法进行识别 使用该方法 识别率可达 到 95 1993 年 美国开发了 ADIS 系统 采用颜色聚类方法 对 停车 标志进行了识 别 7 在对测试样本作识别实验时 获得了全部正确的识别结果 但是 由于 ADIS 系统并非实时处理的 因而识别时间表现出不确定性 1994 年 一套具有实时性的交通标志识别系统被戴姆勒 奔驰汽车公司与德国的 科布伦茨 兰道大学的研究人员合作研制了出来 在 SParclo 机器上运行该套系统 其 最快识别速度可达到 3 2S 幅 在交通标志图像库上进行实验 它对 40000 多幅图像 的识别准确率可达 98 2001 年 在 Wisconsin 大学 Liu 和 Ran 对交通标志识别进行研究 开发了一个 标志识别系统 该系统以 停止 标志为识别目标 采用基于 HIS 空间的颜色阈值方 法对该系统进行交通标志检测 同时 采用神经网络的方法对该系统进行交通标志识 别 通过对 540 幅交通标志图像进行检测实验 表明该系统的识别准确率达到 95 2005 年 位于瑞典的 GarethLoy 实验室与位于澳大利亚的 Nick Barnes 自动化研 究所联合研发了一个交通标志识别系统 他们利用形状形状上的对称性寻找交通标志 的中心位置 进而采用其它方法识别 该系统的识别准确率达 95 同年 Bahlmann 等人开发了一个分类器 该分离器由交通标志检测 特征提取和识别等功能组成 将 包含 23 个类别 4000 幅交通标志图像的训练样本用于该分类器训练 共测试了 1700 个测试样本 每个类别的图像数目从 30 个到 600 个不等 该分类器对交通标志图像 1 绪论 3 的识别准确率为 94 2007 年 Moutarde 等人开发了一套用于识别欧洲和美国的限速标志交通标志识 别系统 该系统包含交通标志检测和目标跟踪功能 采用神经网络的方法进行识别 使用该系统对美国和欧洲的 281 个限速标志上进行识别实验 系统识别准确率分别为 89 和 90 2008 年 Keller 等人研究出了一种以限速标志为目标的分类算法 用 2880 个样 本对该算法进行训练 该算法在 1233 个测试样本上的识别准确率为 92 4 2009 年 Muhammad 等人运用多个识别方法在包含 6 个类别 1300 幅交通标志图 像上进行实验 这些识别方法中最好的识别准确率为 97 2010 年 西班牙的 Maldonado 8 等人运用支持向量机 Support Vector Machine SVM 的方法 在包含 193 类约 36000 幅的交通标志图像上进行识别 识别 准确率为 95 5 该方法的实验数据集没有公开出来 它进行实验的训练样本和测试 样本没有区分开 上个世纪 我国经济发展较为落后 人们生活水平普遍较低 交通运输条件相对 较差 居民车辆拥有率较低 对交通标志识别要求迫切性不强 因而交通标志的识别 研究工作较为滞后 随着我国经济的高速发展 居民购买力也不断增强 社会车辆日 益增多 导致城市交通日益拥挤 推动了对交通标志识别研究的迫切要求 越来越多 的高校的研究人员和国内科研机构都在致力开展交通标志识别研究 目前 清华大学 国防科技大学 浙江大学 南京理工大学等高校在该类研究中已取得了较为显著的成 果 综合以上介绍可知 国内外进行识别研究的方法不具有可比性 因为他们的方法 都是在自身特定的数据集上进行实验 而且很多数据集没有公布出来 本文为了方便 比较 使用了德国神经计算研究所发布的一个交通标志数据集 该数据集具有可扩展 性 本文利用这个数据集来开展相关识别研究 1 3 论文工作 普通人看来交通标志的识别工作并没有什么难度 因为交通标志的颜色 形状 大小以及图案都是按照一定的国际标准进行设计 而且交通标志在道路上的安装位置 和高度也有一定的规律 从这个方面来看 人们会觉得交通标志的识别方法有规律可 寻 并没有那么复杂 但是事实并非如此 由于交通标志图像来源于户外的特殊场景 其受到多方面的影响和制约 会严重影响交通标志的识别效果和系统的运行效率 这 样 与其它室内场景或者自然场景的目标识别研究相比 标志识别研究要困难得多 论文以课题研究为背景所做的主要工作如下 1 论文以本单位的科研项目为背景 选择了识别交通标志为论文研究内容 虽 然论文工作只是智能交通项目的一小部分 但所做工作对该项目有一定的实际意义 2 通过查阅国内外相关研究成果 对于图像识别技术 以及识别交通标志的基 4 本方法进行了系统了解 清晰了研究交通标志的思路和方法 3 以公开的德国交通标志数据库作为实验数据 数据来源具有一定的可靠性 采用该数据库的数据重点研究了交通标志图像的检测和特征提取方法 4 在分别研究 AdaBoost 和 SVM 两种图像识别方法的基础上 采用融合两种方 法的技术路线对交通标志进行了识别作了试验和验证 5 用 Matlab 工具对识别方法实施仿真 结果证明了融合 AdaBoost 和 SVM 的交 通标志的识别方法具有较好的效果 1 4 本文的框架和研究内容 下面对本论文的框架和具体研究内容进行简要介绍 第一章主要说明了本文的研究背景和研究意义 以及对国内外对交通标志识别的 研究现状和标志识别技术中的难点进行介绍等 第二章介绍交通标志图像预处理技术 首先说明了本文所采用的交通标志数据集 并且对目前常用的图像预处理方法做了概述 介绍了本文交通标志预处理使用的方法 第三章首先讨论了交通标志检测的方法 并对目前常用的检测方法做了简单的介 绍 然后采用了本文使用的检测方法 并通过相关实验验证了该方法的有效性 第四章介绍了交通标志特征的提取 以及目前常用的特征提取方法 并对该方法 进行了分析 最后采用了本文使用的一种新的交通标志图像特征提取方法 第五章首先介绍了 SVM 的基本理论和几何模型 接着对 SVM 中存在的不足进 行了论述 然后阐述了目前使用比较频繁的几种先进的 SVM 分类器 再接下来就是 建立基于 SVM 的训练模型 引入了集成学习中的 Boosting 和 AdaBoost 的基本理论 并对基于径向基核函数的 PTSVM RBF PTSVM 分类器的 AdaBoost 方法进行了一 系列改进 第六章对系统进行设计和实现 并通过运行对比了几种交通标志识别方法的性能 根据实验结果解释来了传统的识别方法识别率不高的原因 并在交通标志数据库上实 验验证了本文所用的识别方法的有效性 第七章对本文的研究进行了总结 同时对后续研究进行了展望 2 交通标志识别的实验数据集和图像预处理 5 2 交通标志识别的实验数据集和图像预处理 本章首先对交通标志识别的实验数据集进行介绍 了解所用数据集中交通标志的 类型和特点 然后对数据集中的图像进行分析 对比各种图像预处理算法的结果后 对图像中的随机噪声和运动模糊分别采用中值滤波和维纳滤波进行消除 以便为后面 的交通标志检测和识别提供良好的图像数据 2 1 实验数据集 本文采用的交通标志图像是关于计算机智能的 IEEE 世界代表大会倡导使用的一 个比赛数据集 9 它是由德国神经计算研究所收集并公布 这个比赛的目的为了开发 出一种适用于德国交通标志检测和识别的智能化识别软件 为德国的交通安全服务 该数据集中有大小维数并不统一的 43 类德国交通标志图像 图像数据在自然场景下 采集得到 受到一定程度的光照的影响 并包含有噪声 本文按照标志形状 将 43 类交通标志分为 3 类 第一类为圆形 包含有 26 类交通标志 同时把其中的一类八 边形标志归类为圆形 第二类为三角形 包含有 16 类交通标志 第三类为菱形 只有 1 类交通标志 其中的部分交通标志如图 2 1 所示 a 限速标识 b 解除限制标识 c 指示标识 d 禁令标识 e 八边形 停止 标识 图 2 1 德国交通标志数据库的图像示例 该数据集已经公开在网上 其中的数据来源于一段十个小时的视频 是在 2010 年 3 月的白天 到德国各种类型的道路上采集而来的 使用的图像采集设备是一架 Prosilica GC 1380CH 照相机 其视频帧率为 25 帧 秒 并且是全自动曝光的 得到的 6 图像分辨率为 1360 1024 在该数据集中 包含了很多轨迹序列 track 每个轨迹序列都代表一个交通标 志实例 每一个轨迹序列中含有 30 幅交通标志图像 每一类样本中有几个到几十个 不等的轨迹序列 如图 2 2 所示 多个轨迹序列就组成了一个交通标志样本 其中的 每个交通标志都是唯一的 不会发生重复 图 2 2 某个交通标志的一个轨迹序列 2 2 交通标志图像预处理 由于在户外场景下采集交通标志图像 各种随机噪声难以避免 再加上采集时 车辆上的相机一直在运动 所以图像会产生一定的运动模糊 我们称被噪声污染的图 像为退化图像 它可以用公式表示为 2 g x yH f x yn x y 1 其中表示为原图像 代表随机噪声 为退化函数 为退化后 f x y n x y H g x y 的图像 退化流程如下图所示 图 2 3 图像的退化流程 为了不影响图像的检测和识别 我们需要对其作出包括除随即噪声和运动模糊的 预处理 本章针对几种图像预处理算法进行了对比 最后确定对随机噪声的消除采用 中值滤波 对运动模糊的消除采用维纳滤波 2 2 1 随机噪声的消除 在图像预处理中 比较常用的消除随机噪声的方法有中值滤波 均值滤波以及高 斯滤波等多种 1 均值滤波 均值滤波属于线性滤波 10 即在给目标像素定一个窗口模板 然后 将窗口内的 目标像素的所有像素灰度值去掉 将所得的平均值代替原始像素的灰度值 设计出合 理的窗口模板 既卷积核 是均值滤波的关键 常用的卷积核如式 2 2 所示 2 交通标志识别的实验数据集和图像预处理 7 2 2 3 1 1 1 1 1 1 1 9 1 1 1 T 3 01 0 1 1 1 1 5 01 0 T 3 1 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 T 3 01 0 1 1 1 1 1 1 1 21 1 1 1 01 0 T 2 中值滤波 在图像处理中 我们最常见的一种滤波方式就是中值滤波 它是一种非线性的排 序滤波器 其原理是 将一个窗口内所有的像素按灰度值进行排序 取窗口中MN 排序后的中值去代替原始像素的灰度值 这样 就会得到更接近于真实值的像素 从 而实现对噪声点的消除 中值滤波器常用的窗口类型有方形 十字形 条形等 比如有一条形窗口 各个 像素点的灰度值为 3 5 201 156 6 34 67 131 167 则这个窗口的中值为 67 原始像素 点的灰度值用 67 取代 3 高斯滤波 作为一种特殊的线性均值滤波器 高斯滤波被广泛的用于图像去噪过程 可以消 除高斯噪声 高斯滤波就是使用高斯函数作为权函数 对整幅图像进行加权求平均值 任意一个像素点的灰度值都是其自身和领域内的像素点灰度值经过加权后所求的平均 值 常用的一维高斯滤波函数为 2 0 2 2 2 1 2 x x p xe 高斯滤波器的核呈现布局如图 2 4 所示 图 2 4 高斯滤波器的核呈现布局 高斯滤波的基本原理为 为目标像素点设定一个窗口模板 对模板内像素的灰度 值进行加权求平均值 用此值去将原始像素的灰度值替代 2 2 2 运动模糊的消除 由于交通标志图像是通过运动的相机采集得到的 这样就不可避免的会产生运动 模糊 为了消除交通标志图像的运动模糊 本文采用了两种方法 即维纳滤波和逆滤 8 波两种方法进行实验 实验结果表明维纳滤波较逆滤波的效果更好 因此选择维纳滤 波作为本文的消除运动模糊的方法 1 维纳滤波 维纳滤波是由维纳 N Wiener 在 1942 年提出来的 11 属于一种基于最小二乘 法的滤波算法 它的适用范围比较广 无论连续的还是离散的 标量还是向量都可以 用它进行滤波 它的缺点是 对于要求得到半无限时间区间内的全部观察数据这一条 件很难满足 对于非平稳的随即数据也不能用它进行滤波 因此它的实用性不强 维纳滤波的基本原理为 对式 2 1 进行傅里叶变换 后利用维纳滤波进行图 像滤波 可表示为式 2 3 2 2 F u vG u v Hu vH u v 3 其中 表示采集到的退化图像 代表的是退化函数 是 G u v H u v Hu v 的复共扼表示 表示真实的图像 即未退化的图像 是常数 表示噪 H u v F u v 声功率谱密度比 维纳滤波就是对退化图像进行还原 去除噪声点的污染 求得真实 图像的最接近值 2 逆滤波 逆滤波也是一种图像复原滤波 其还原图像的流程如下图 2 5 所示 图 2 5 逆滤波的流程图 我们假设图像中不存在噪声点 则对 2 1 进行傅里叶变换 然后推到得出 2 11 G u v f x yfF u vf H u v 4 在 2 6 中我们已知和 这样就可以求出 求得后 G u v H u v F u v F u v 可根据 2 7 求的原始图像 f x y 与维纳滤波不同的是 逆滤波容易受到噪声的干扰 若噪声为零 则逆滤波能够 完全的还原图像 如果噪声存在 且很小或者为零 则还原后的图像中噪声会 H u v 被放大 这就意味着在噪声很小但是也很小的情况下 逆滤波还原后的图像会 H u v 更加失真 2 3 实验结果 图 2 6 是对一幅交通标志图像分别进行均值滤波 中值滤波和高斯滤波的结果 2 交通标志识别的实验数据集和图像预处理 9 对比三种滤波结果和滤波算法的原理可知 均值滤波虽然执行速度很快 但是容易造 成图像模糊 它并没有消除随进噪声点 反而使噪声点扩散到其他领域中 高斯滤波 属于一种特殊的均值滤波 其滤波结果与均值滤波结果相近 而且窗口模板越大 滤 波后的图像越模糊 中值滤波因为有一个排序的过程 所以其计算复杂度较高 但是 它不容易造成图像模糊 而且去噪性能非常好 能够在消除随机噪声的同时不使图像 边缘变模糊 为了保障滤波后的图像处理和交通标志识别的准确率 我们采用中值滤 波的方法去除随机噪声 10 图 2 6 各种滤波的图像去噪结果 图 2 7 是分别使用维纳滤波和逆滤波消除运动模糊的结果 从图 2 7 中可以看出 经过维纳滤波和逆滤波进行图像还原后 交通标志图像运动模糊都有所消除 但是与 逆滤波相比 维纳滤波的运动模糊消除效果要强 因此交通标志运动模糊的消除 本 文采用维纳滤波进行 图 2 7 使用维纳滤波和逆滤波复原图像 2 交通标志识别的实验数据集和图像预处理 11 2 4 本章小结 本章我们首先介绍了实验所用的交通标志数据集及这个数据集中交通标志的类型 和特点 然后采用一定的方法对交通标志图像中的随机噪声进行消除 采用的方法主 要有均值滤波 中值滤波和高斯滤波等 实验结果证明中值滤波对交通标志图像的噪 声消除效果比其他两种滤波要好的多 同时为了处理交通标志图像中的运动模糊我们 分别采用了维纳滤波和逆滤波进行运动 实验揭示了对于交通标志图像的运动模糊消 除效果 维纳滤波要强于逆滤波 所以 我们选择用中值滤波消除交通标志图像中的 噪声 而对于图像采集过程中产生的运动模糊 则采用维纳滤波消除 12 3 交通标志的检测 3 1 基于颜色的交通标志检测 颜色空间 有时候又称为彩色空间 是指不同波长的电磁波与不同物质相互作用 所构成的色谱空间 基于某些标准 我们在颜色空间里 用通常可接受的方式 RGB HIS CMY Lab 等对彩色加以说明 这里我们主要介绍 RGB 和 HIS 颜色空 间模型 3 1 1 RGB 颜色空间模型 首先 对 RGB 颜色空间 12 作一简要介绍 日常生活中 彩电或其它彩色显示器 等很多生活用品 都是利用 RGB 模式输出 RGB 颜色空间具有作为基础色的三种基 本颜色 通常采用 R Red G Green B Blue 三种颜色的英文首字母进行命 名 经过科学家测算 对这三种基础色进行不同比例的混合 可以得到一千六百多万 种不同的颜色 在所有的颜色空间模型中 最接近大自然色彩种类的就是 RGB 颜色 空间模型 所以有时候又称它为自然色彩模式 图3 1就是 RGB 颜色空间模型的示意 图 图 3 1 RGB 颜色空间模型图 RGB 颜色空间的优点主要表现为 13 对于颜色分割系统的实时性要求可以满足 直观 易于被理解 计算相对简单 基于 RGB 颜色空间模型的标志图像检测算法原 理主要为由 A deEscalera 12 13 等人提出的 RGB 阈值分割方法 见式 3 1 和式 3 2 即 首先是设定分割像素点的 RGB 阈值 根据交通标志的颜色特点进行设定 然后将图像的像素点扫描并与设定的 RGB 阈值范围进行对比 如果图像中的该像素 3 交通标志的检测 13 点属于预先设定的 RGB 阈值范围内 将保留该像素点 反之则设为零 该像素点为 背景 3 1 arb agb abb RfR g x ykGfG BfB 1 其它 3 2 g x yk 2 式 3 1 和式 3 2 中 为图像中的交通标志 为图像的背景 分 1 k 2 k r f g f b f 别为图像中各像素点的 R G B 通道值 但是 由于 RGB 模型对光照非常敏感 遇到如阴雨天气 雾天 傍晚等情况 检测成功率比较低 所以在应用研究中使用的频率不是很高 专家学者以克服光照为 前提 提出了 HIS HSV L a b 等一些比较好的颜色模型 3 1 2 HIS 颜色空间模型 HIS 颜色空间模型是某种色彩通过 H Hue S Saturation I Intensity 三 个参数来表示 14 如图3 2所示 其中 H 为色调 表示颜色反射的波长 其的范围是 S 为饱和度 它的参量范围是 0 100 主要是指色彩的强度或纯度 代 3600 表的是灰色与色调的比例 I 是亮度 这个参量以0 黑色 到100 白色 的百分 比来表示 HIS 颜色空间是人类对颜色视觉感受最接近的系统 让我们从色觉直观性 这方面去观察图像 所以 H I S 这三个参量对于我们理解图像的重要性不言而喻 一般而言 我们人眼对亮度的敏感程度要大于对颜色的敏感程度 所以 HIS 颜色空间 模型在科学研究中使用的频率较高 另外 H I S 这三个参量之间是互相独立的 所以在进行图像处理的时候可以很方便的从图像中提取出来 HIS 在进行交通标志检测的时候 也常被科学家使用 N Kehtamava 等人 15 利用 HIS 进行检测的方法是 在 HIS 彩色空间中 对 H I S 这三个参量设定合理的阈值 范围 对交通标志进行检测 实验进行了多次 最后表明 取式 3 3 设定的阈值 可以得到最佳检测效果 3 356 15 84 H S I 3 14 图 3 2 HIS 颜色空间模型 由于我们采集得到的图像是 RGB 格式的 处理时需要把它转换成 HIS 格式 由 于这是一种非线性的颜色空间转换 尤其是对于尺寸较大的图像需要作三角函数及除 法运算 因此会对转换结构产生一定的影响 计算机的计算负担很大 因而降低了交 通标志检测效率 交通标志的检测方法有很多 除了 RGB 模型 HIS 模型等常用的经典颜色空间 方法 还有区域增长法 人工神经网络法等其它一些基于颜色的检测方法 3 2 基于形状的交通标志检测 交通标志通常具有三角形 圆形 矩形 八边形等固定形状 其中八边形可归类 为圆形 这种利用形状检测交通标志的方法 是行之有效的 目前针对形状的交通标 志检测方法 主要有以下几种 1 基于边缘的方法 基于边缘的方法很多 其中 Hough 变换法是最经典的方法 Kuo W J 等 16 人就是 采用 Hough 变换法对三角形和圆形交通标志进行检测 该方法在噪声 形变和部分区 域残缺时在稳定性和可靠性上表现了很好的结果 但也存在运算复杂 时间较长的缺 点 不能满足实时性要求 为此 Barnes 提出了光线对称性算法的 Hough 变换方法 该法运算量较小 运算速度快 但只能检测圆形交通标志 不能检测三角形和矩形 2 拐角提取算法 矩形或三角形类交通标志都有角度 即存在拐角 这是它们的重要特征 因此利 用拐角提取算法检测交通标志是一个很好的方法 目前主要有两种具体方法 一种是 对目标边缘进行编码 可以利用边缘检测器实现 但是该法存在着编码复杂问题 因 而检测器的良好性较差 另一种方法利用分类器来判断梯度强度与方向的变化 以此 来确定当前像素点是否为拐角 利用该法可以提取到图像中的许多拐角 但同时也会 提取出一些非目标的拐角 所以也存在较高的检测错
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发动机燃烧优化方案
- 职业教育产教融合平台建设方案
- 化学品检测实验室管理规程
- 2025重庆市万州区长坪乡人民政府非全日制公益性岗位招聘1人笔试备考题库及答案解析
- 2025中国光大银行股份有限公司昆明分行社会招聘笔试模拟试题及答案解析
- 内部审计流程规范
- 市场研究分析师的市场调研方法和数据分析
- 2025兴业银行总行国际业务部交易银行部招聘考试备考试题及答案解析
- 打造个性化营销赢得市场
- 2025土地估价师考试《管理基础》模拟真题及答案
- 不干胶贴标机设计学士学位论文
- 《劳动合同书》-河南省人力资源和社会保障厅劳动关系处监制(2016.11.15)
- 钢轨检测报告
- 战略管理:概念与案例
- GB/T 3505-2009产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数
- GB/T 11186.1-1989涂膜颜色的测量方法第一部分:原理
- 09S304 卫生设备安装图集
- 自动化导论全套课件
- 微纳加工课件
- 危重病人紧急气道管理课件
- 跟痛症教学讲解课件
评论
0/150
提交评论