




已阅读5页,还剩52页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路 数学 路漫漫其修远兮吾将上下而求索 北师大版 选修2 3 计数原理 第一章 4简单计数问题 第一章 能选择分类加法计数原理或分步乘法计数原理 应用有关排列 组合的知识解决一些简单的实际问题 本节重点 两个计数原理 排列组合知识 本节难点 用好两个计数原理和排列 组合的知识 一一对应 元素 特殊元素 其他元素 位置 特殊位置 其他位置 全部元素的排列顺序 不符合要求的元素的排列顺序 特殊 分类 排列组合 1 直接法可先考虑某个元素可在某个位置 或者某个位置可填某个元素 而间接法 先不考虑特殊性 从总数中减去不适合条件的 2 解决相邻或不相邻问题的方法 1 捆绑法 解决 若干元素相邻 的排列问题 一般使用捆绑法 也就是将相邻的若干元素 捆绑 在一起 看作一个大元素 与其他的元素进行全排列 然后再 松绑 将被 捆绑 的若干个元素内部进行全排列 2 插空法 解决 若干元素不相邻 也就是 若干元素间隔 的排列问题时 往往先排列好个数较少的元素 再让其余元素插排在它们之间或两端的空位中 否则 若先排个数较多的元素 再让其余元素插空排列时 往往个数较多的元素有相邻的情况 插空法与捆绑法有同等作用 3 常用的解答组合问题的方法有很多 有分类法 直接法 间接法等常用的方法 还有插空法及隔板法等特殊方法 要解决组合问题 还可用到构造数学模型等方法 不同的方法用以解决不同的问题 要掌握好各种方法及方法应用的背景 4 有关组合问题的题目的背景常以 几何问题 产品质量抽样检测问题 集合问题 人或物的有关分配问题 等形式出现 处理问题时常常利用分类思想 在解组合问题及组合与排列的综合问题时 要注意准确地应用两个基本原理 要注意准确区分是排列问题还是组合问题 要注意在利用直接法解题的同时 也要根据问题的实际恰当地利用间接法解题 5 排列与组合的区别与联系 1 根据排列与组合的定义 前者是从n个不同元素中取出m个不同元素后 还要按照一定的顺序排成一列 而后者只要从n个不同元素中取出m个不同元素并成一组 所以区分某一问题是排列还是组合问题 关键看选出的元素与顺序是否有关 若交换任意两个元素的位置对结果产生影响 则是排列问题 而交换任意两个元素的位置对结果没有影响 则是组合问题 也就是说排列与选取元素的顺序有关 组合与选取元素的顺序无关 2 排列与组合的共同点 就是都要 从n个不同元素中 任取m m n 个元素 而不同点在于元素取出以后 是 排成一排 还是 组成一组 其实质就是取出的元素是否存在顺序上的差异 因此 区分排列问题和组合问题的主要标志是 是否与元素的排列顺序有关 有顺序的是排列问题 无顺序的是组合问题 例如123 321和132是不同的排列 但它们都是相同的组合 再如两人互寄一次信是排列问题 互握一次手则是组合问题 6 解排列与组合应用题时 首先应抓住是排列问题还是组合问题 界定排列与组合问题是排列还是组合 唯一的标准是 顺序 有序是排列问题 无序是组合问题 当排列与组合问题综合到一起时 一般采用先考虑组合后考虑排列的方法解答 其次要搞清需要分类 还是需要分步 分类加法计数原理与分步乘法计数原理是关于计数的两个基本原理 它们不仅是推导排列数公式和组合数公式的基础 而且其应用贯穿于排列与组合的始终 学好两个计数原理是解决排列与组合应用题的基础 切记 排组分清 有序排列 无序组合 加乘明确 分类为加 分步为乘 1 从5名男生和5名女生中选3人组队参加某集体项目的比赛 其中至少有一名女生入选的组队方案数为 a 100b 110c 120d 130 答案 b 2 2014 山西太原五中月考 如果小明在某一周的第一天和第七天分别吃了3个水果 且从这周的第二天开始 每天所吃水果的个数与前一天相比 仅存在三种可能 或 多一个 或 持平 或 少一个 那么 小明在这一周中每天所吃水果个数的不同选择方案共有 a 50种b 51种c 140种d 141种 答案 d 3 由1 2 3 4 5 6组成没有重复数字且1 3都不与5相邻的六位偶数的个数是 a 72b 96c 108d 144 答案 c 4 有4位同学在同一天的上 下午参加 身高与体重 立定跳远 肺活量 握力 台阶 五个项目的测试 每位同学上 下午各测试一个项目 且不重复 若上午不测 握力 项目 下午不测 台阶 项目 其余项目上 下午都各测试一人 则不同的安排方式共有 种 用数字作答 答案 264 5 甲 乙 丙三人站到共有7级的台阶上 若每级台阶最多站2人 同一级台阶上的人不区分站的位置 则不同的站法种数是 用数字作答 答案 336 如图所示 现有4种颜色给四川 青海 西藏 云南四省 区 的地图染色 每一个省 区 只染一种颜色 要求相邻的省 区 染不同的色 则不同的染色方法有多少种 与染色有关的计数问题 几何元素的计数问题 在一个正方体中 各棱 各面对角线和体对角线中 共有多少对异面直线 分析 解答本题可用间接法求解 28条线段任取2条的组合中除去不能构成异面直线的情况 或者构造模型 借助三棱锥中有且仅有3对异面直线来解决 四面体的4个顶点和各棱中点 这10个点最多可确定多少个四面体 解析 本题的实质是从这10个点中任取4个不共面的点 共有多少种不同取法 如图所示 所取出的4点共面的情况有以下三种 利用 隔板法 解决分配问题 有10个三好学生名额 分配到高三年级六个班中 每班至少一名 共有多少种不同分法 有10个相同的小球装入3个编号分别为1 2 3的盒子中 每次要将10个球装完 要求盒子里球的个数不小于盒子的编号数 这样的做法种数是 答案 15 含有双重元素的组合问题 某外语组有9人 每人至少会英语和日语中的一门 其中7人会英语 3人会日语 从中选出会英语和日语的各一人 有多少种不同的选法 分析 由题意知有1人既会英语又会日语 在选择2人时 可根据只会英语的人进行分类完成 解析 由题意得有1人既会英语又会日语 6人只会英语 2人只会日语 第一类 从只会英语的6人中选1人说英语有6种方法 则会日语的有2 1 3 种 此时共有6 3 18 种 第二类 不从只会英语的6人中选1人说英语有1种方法 此时选会日语的有2种 故共有1 2 2 种 方法 所以由分类计数原理知共有18 2 20 种 选法 车间有11名工人 其中5名男工是钳工 4名女工是车工 另外两名老师傅既能当车工又能当钳工 现在要在这11名工人中选派4名钳工 4名车工修理一台机床 有多少种选派方法 分析 把11名工人按男钳工 女车工和老师傅分为三类 然后根据要求在每一类中选取所需人数 排列中的定序问题 有3名男生 4名女生 按下述要求 分别求出其不同排列的种数 1 选其中5人排成一行 2 全体排成一行 其中甲只能在中间或者两头的位置 3 全体排成一行 其中甲 乙必须在两头 4 全体排成一行 其中甲不在首 乙不在尾 5 全体排成一行 其中男生 女生都各不相邻 6 全体排成一行 其中男生不能排在一起 7 全体排成一行 其中甲 乙 丙按自左至右的顺序保持不变 8 全体排成一行 甲 乙两人间恰有3人 9 全体排成前后两排 前排3人 后排4人 分析 本题包括了有限制条件的排列问题的几种基本类型 注意在处理这类问题时一般应遵循 先特殊 后一般 的原则 即先考虑特殊的元素或特殊的位置 再考虑一般的元素和位置 对于 必相邻 元素 常采用 捆绑法 的技巧 对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年月日课件导学案
- 年度安全知识培训课件
- 年前安全用气培训课件
- 年初安全知识培训课件
- 平面力偶系平衡课件
- Floxuridine-13C-15N2-5-Fluorouracil-2-deoxyriboside-sup-13-sup-C-sup-15-sup-N-sub-2-sub-生命科学试剂-MCE
- Faridoxorubicin-AVA-6000-生命科学试剂-MCE
- 农发行榆林市靖边县2025秋招无领导模拟题角色攻略
- 农发行邢台市信都区2025秋招笔试热点题型专练及答案
- 新能源技术创新2025年危机公关应对策略与案例研究报告
- 养老护理员中级考试题库2025年(附答案)
- 2024年河北石家庄交通投资发展集团有限责任公司招聘考试真题
- 公安援疆工作总结
- 云南昆明元朔建设发展有限公司招聘笔试题库2025
- 湖南省益阳市2026届高三9月教学质量监测数学试题(含答案)
- 第8课《网络新世界》第一课时-统编版《道德与法治》四年级上册教学课件
- 2025秋人教版美术七年级第一单元 峥嵘岁月第1课 情感表达2
- 装饰工程拆除施工方案(3篇)
- 2025年全球汽车供应链核心企业竞争力白皮书-罗兰贝格
- 2025年大学生英语六级必考词汇表全部汇编(带音标)
- 眼睑基底细胞癌ppt课件
评论
0/150
提交评论