![「秒解三视图中求椎体表面积的小公式[参照提供]」.doc_第1页](http://file.renrendoc.com/FileRoot1/2019-12/25/60b89a23-5360-43e3-bffc-d119d7510911/60b89a23-5360-43e3-bffc-d119d75109111.gif)
![「秒解三视图中求椎体表面积的小公式[参照提供]」.doc_第2页](http://file.renrendoc.com/FileRoot1/2019-12/25/60b89a23-5360-43e3-bffc-d119d7510911/60b89a23-5360-43e3-bffc-d119d75109112.gif)
![「秒解三视图中求椎体表面积的小公式[参照提供]」.doc_第3页](http://file.renrendoc.com/FileRoot1/2019-12/25/60b89a23-5360-43e3-bffc-d119d7510911/60b89a23-5360-43e3-bffc-d119d75109113.gif)
免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
秒杀三视图中求锥体表面积的小公式今天再给大家讲一个三视图中一个求锥体表面积的神奇小结论,还是不需要将三视图还原成立体几何体,而是直接利用三个试图就可求出表面积.当然,这个结论要比求体积的方法含金量高很多,求表面积相对求体积的问题难度系数要高.因为在求立体几何体的侧面积的时候,往往需要把每个侧面的高都求出来,而运算量就相应的加大了.前面在说三视图规律的时候曾总结了一个这样的结论:如果三视图中有两个视图都为三角形(只看外部的轮廓线,不管内部的虚线或实线),那么这个空间立体几何一定为锥体. 锥体的表面积需要求出各侧面的面积,侧面积之和即为立体几何体的侧面积,而侧面之和再加上底面面积即为表面积.当然底面积特别好求,一般就为俯视图的面积,主要是侧面积,往往需要将三视图还原然后做各个侧面的高,然后求出面积,过程复杂且繁琐,不在需要还原三视图,直接通过平面几何即可求出各个侧面,请同学们记住下面的这个公式:这里的L表示俯视图中三边的边长,h表示三个视图中各视图的高,L和h通过试图一眼就可以看出,要注意这里的d,它表示的是锥体顶点在底面的射影到俯视图中各边的距离.下面以几道真题带领大家掌握这个公式.神奇小公式解法:第一步:利用三个视图各边的关系(长对正,高平齐,宽相等)将俯视图中各边的边长都找出来,有的题里俯视图的三边都是已知的;第二步:找出各三个视图的高第三步:找出顶点在底面的射影到俯视图中各边的距离d.前面两步是直接就可看出来的,这里唯一有一个地方需要手动算得就是d,当然这里也是特别容易的,好了以上面的例题为例来讲解一下如何运用,为了方便起见,我在这里列了一个表格.(同学们在草稿纸上是可以直接写的,分别把对应一组L,h,d标出来,然后求侧面积).这里的L分别为5,4,然后是各视图的高都为4,最后是d,d表示的是顶点在底面射影到俯视图个边的距离,当然顶点在底面的射影是一目了然的,直接就是俯视图中边长为5边上的那个分界点.我们知道三个视图中往往正视图下面就是俯视图,所以顶点在底面的射影很明显,那好了,针对这道题里的d,射影到边长为5的距离为0,到边长为4的距离是3,到边长为的距离需要手动算一下,设其为c,利用相似三角形,c:2=4:,得c为,即射影到边长为的距离为.如下表所示:因为想给大家尽量讲的清楚一点,所以说的有点多,但并不是过程很复杂,接下来我们看例2.这里的L分别为2,和,然后是各视图的高都为1,d射影到边长为2的距离为0,到边长为的距离都为,如下表.这里俯视图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黏性土界限含水率的测定说课稿-2025-2026学年中职专业课-地基与基础工程施工-建筑类-土木建筑大类
- 2025物业管理服务版合同书
- 2025无固定期限劳动合同
- 2025设备终止合同协议书
- 黄石事业单位笔试真题2025
- Unit 3 Keep Fit Section A(1a-1d)(说课稿) 2024-2025学年人教版(2024)七年级英语下册
- 2025品牌专卖店合作伙伴合同书
- 塑料厂压延机操作规章
- 四川事业单位笔试真题2025
- 第6课 对外开放的基本国策说课稿-2025-2026学年中职思想政治经济政治与社会(第4版)北师大版
- 质量部长述职报告
- 无人机技术在农业领域的可行性分析报告
- 规模灵活资源广域接入的新型配电系统分层分群架构与规划技术研究
- 音乐心理学理论-洞察分析
- 法院报名登记表
- 上海市闵行区区管国企招聘笔试冲刺题2025
- 2025年恒丰银行烟台分行招聘笔试参考题库含答案解析
- 中外建筑史课件
- 2024年度商业保理合同:保理公司与出口商之间的商业保理协议3篇
- 宣传网络安全文明上网
- 应急管理部14号令《生产安全事故罚款处罚规定》 修改前后对照表及解读
评论
0/150
提交评论