




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 2 2椭圆的简单几何性质 第二章圆锥曲线与方程 复习 1 椭圆的定义 到两定点f1 f2的距离之和为常数 大于 f1f2 的动点的轨迹叫做椭圆 2 椭圆的标准方程是 3 椭圆中a b c的关系是 a2 b2 c2 当焦点在x轴上时 当焦点在y轴上时 椭圆的几何性质 1 范围 由 即 a x a b y b 说明 椭圆落在x a y b组成的矩形中 x 1 范围 对称性 f2 f1 o x y 椭圆关于y轴对称 f2 f1 o x y 椭圆关于x轴对称 a2 a1 f2 f1 o x y 椭圆关于原点对称 2 椭圆的对称性 结论 椭圆关于x轴 y轴 原点对称 椭圆上任意一点p x y 关于y轴的对称点是 同理椭圆关于x轴对称关于原点对称 即在椭圆上 则椭圆关于y轴对称 x y 3 椭圆的顶点 令x 0 得y 说明椭圆与y轴的交点 令y 0 得x 说明椭圆与x轴的交点 顶点 椭圆与它的对称轴的四个交点 叫做椭圆的顶点 长轴 短轴 线段a1a2 b1b2分别叫做椭圆的长轴和短轴 a b分别叫做椭圆的长半轴长和短半轴长 椭圆几何性质的应用 1 椭圆的焦点决定椭圆的位置 范围决定椭圆的大小 离心率决定了椭圆的扁圆程度 对称性是椭圆的重要特征 顶点是椭圆与对称轴的交点 是椭圆重要的特殊点 若已知椭圆的标准方程 则根据a b的值可确定其性质 2 明确a b的几何意义 a是长半轴长 b是短半轴长 不要与长轴长 短轴长混淆 由c2 a2 b2 可得 已知椭圆的四个顶点 求焦点 的几何作图法 只要以短轴的端点b1 或b2 为圆心 以a为半径作弧交长轴于两点 这两点就是焦点 名师点睛 1 思考 已知椭圆的长轴a1a2和短轴b1b2 怎样确定椭圆焦点的位置 o b2 b1 a1 a2 f1 f2 因为a2 b2 c2 所以以椭圆短轴端点为圆心 a长为半径的圆与x轴的交点即为椭圆焦点 离心率 长半轴为a半焦距为c 思考 保持长半轴a不变 改变椭圆的半焦距c 我们可以发现 c越接近a 椭圆越 这样 我们就可以利用 和 这两个量来刻画椭圆的扁平程度 扁平 c a 看动画 椭圆的离心率 因为a c 0 所以e的取值范围是 0 e 1 e越接近于1 则c越接近于a 从而b就越小 因此椭圆就越扁反之 e越接近于0 c就越接近于0 从而b就越接近于a 这时椭圆就越接近于圆 当且仅当a b时 c 0 这时两个焦点就 图形变为 它的方程为 重合 圆 看动画 椭圆的离心率对椭圆形状的影响 2 4 椭圆的离心率 e与a b的关系 x a y b 关于x轴 y轴成轴对称 关于原点成中心对称 a 0 a 0 0 b 0 b c 0 c 0 长半轴长为a 短半轴长为b a b a2 b2 c2 x a y b 关于x轴 y轴成轴对称 关于原点成中心对称 a 0 a 0 0 b 0 b c 0 c 0 长半轴长为a 短半轴长为b a b a2 b2 c2 x b y a 同前 b 0 b 0 0 a 0 a 0 c 0 c 同前 同前 同前 椭圆的简单几何性质 自学导引 a b 0 a b 0 a x a 且 b y b b x b 且 a y a a1 a 0 a2 a 0 b1 0 b b2 0 b a1 0 a a2 0 a b1 b 0 b2 b 0 2b 2a f1 c 0 f2 c 0 f1 0 c f2 0 c 2c x轴和y轴 0 0 例1 求椭圆16x2 25y2 400的长轴和短轴的长 离心率 焦点和顶点坐标 因此 椭圆的长轴长和短轴长分别是 离心率 焦点坐标分别是 四个顶点坐标是 解题的关键 1 将椭圆方程转化为标准方程2 确定焦点的位置和长轴的位置 椭圆第二定义 x y f f o m 自学导引 直线与椭圆的位置关系 种类 相离 没有交点 相切 一个交点 相交 二个交点 相离 没有交点 相切 一个交点 相交 二个交点 直线与椭圆的位置关系的判定 代数方法 所以消y得一个一元二次方程 两 一 无 自学导引 知识应用 思考 最大距离为多少 名师点睛 利用设而不解的方法求解直线与椭圆相交位置关系中的中点 弦长等问题是本节特别常见的方程思想方法 方法技巧函数方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管理中队宣传阵地
- 房屋建筑土壤改良施工方案
- 市政道路路面施工方案
- 灌区节水灌溉与排涝协同实施方案
- 仓储人员岗位培训与作业流程规范方案
- 城市广场硬化建设方案
- 智能交通系统建设方案
- 人防工程消防设施配套建设方案
- 冰雪运动培训基地建设项目建筑工程方案
- 市政管网改造及换热站更新项目施工方案
- 福特锐界2018款说明书
- 幼儿园海军知识
- 塑料厂应急预案
- 第八章工程建设执业资格法规
- 计算机科学与技术专业毕业论文
- JJF 1685-2018紫外荧光测硫仪校准规范
- UL实用标准电子线常用规格表
- 大学预算绩效管理办法(试行)模板
- 西方音乐史全套完整教学课件
- 血液净化治疗临床应用
- 年产12000吨水合肼(100%)项目环评报告书
评论
0/150
提交评论