




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中国教育培训领军品牌美国纳斯达克上市机构 环 球 雅 思 教 育 学 科 教 师 讲 义年 级 : 上 课 次 数 :学 员 姓 名 : 辅 导 科 目 : 学 科 教 师 :课 题 课 型 预习课 同步课 复习课 习题课授课日期及时段 教 学 内 容【基础知识网络总结与新课讲解】知识点一:一元一次不等式的定义1、不等号的两边都是整数,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式。注意:其标准形式 ax+b0或ax+b0, ax+b0或ax+b0(a0) 例1.判断下列属于一元一次不等式的是 108 2x+13y+2 x2 +352、能使不等式成立的未知数的值的全体叫做不等式的解集,简称为不等式的解。常见的解集有:3、一元一次不等式和一元一次方程的联系与区别例2.判断下列哪些是一元一次方程,哪些是一元一次不等式 x+16 x+8=2x 30x90 x+16 x+2x3 13x+1=6 知识点二 一元一次方程的解4、回顾一元一次方程的解法例3.-1=注:解一元一次方程有哪些步骤去分母方程两边同乘以各分母的最小公倍数去括号应用分配律、去括号法则,移项一般把含未知数的项移到方程的左边,常数项移到方程的右边。合并同类项要注意只是系数相加减,字母及其指数不变系数化为1同除以未知数前面的系数或乘以系数的倒数,即axbx联系上面一元一次方程的解法 ,解一元一次不等式,并将它的解集在数轴上表示出来练习:(1) 2x+13 (2)3x+12x-5 (说出变形的方法和其依据)(不等式的性质几)例4.解不等式,并把它的解集在数轴上表示出来 思路分析:解一元一次不等式的步骤与解一元一次方程的步骤类似,但在“系数化为1”,这一步上有明显的不同,一定要区分开来 解:去分母,得 3(x+3)-62(2x-3) 去括号,得 3x+9-64x-6 移项,得 3x-4x-6-9+6(或9-6+64x-3x即4x-3x9-6+6) 合并,得 -x-9 两边同除以-1,得 x9这个不等式的解集在数轴上的表示,如图所示 一元一次方程和一元一次不等式解法的比较解方程的一般步骤: 解不等式的一般步骤:1. 去分母 1. 去分母2. 去括号 2. 去括号3. 移项 3. 移项4. 合并同类项 4. 合并同类项5.系数化为1 5. 系数化为1 说明:解一元一次不等式和解一元一次方程类似不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方例6. 解:去分母,得 (不要漏乘!每一项都得乘) 去括号,得 (注意符号,不要漏乘!) 移 项,得 (移项要变号) 合并同类项,得 (计算要正确) 系数化为1, 得 (同除负,不等号方向要改变,分子分母别颠倒了)注意:针对上述解方程与解不等式的步骤及格式的比较,讨论下列问题:(1)解一元一次不等式的步骤是怎样?它与解一元一次方程的步骤有何异同?(2)解一元一次不等式时,需注意什么?(3)解一元一次不等式的基本思想是什么?结合回答,提醒学生:在解方程中易犯的错误,在解不等式也易犯,要特别注意如要去分母时,各项都要乘以公分母加括号与去括号时,要遵循有关法则等;注意当不等式的两边同乘以、同除以同一个负数时,不等号要改变方向;解一元一次不等式的基本思想是运用不等式的三条基本性质,将不等式变形为xa或xa的形式,从而求得等式的解集练习:1解下列不等式,并把解集在数轴上表示出来:(1)2(x+2)-6-3(x-4) (2)5-2根据下列条件,求x的取值范围:(1)2x-1的值不小于0; (2)的值小于13不等式3x-57的非负整数解有_4不等式3x-112-x的正整数解的个数是( ) A3 B4 C5 D65a取什么值时,式子3a+2的值 (1)是正数? (2)是负数 (3)是0?【拓展延伸】 1若ax30的解集是x1,则x的值是多少? 2.解不等式:1(利用分数的基本性质,把分子、分母都乘以100,再去分母。)知识点三 一元一次方程的应用【导入训练】1、(河北省)在一次“人与自然”知识竞赛中,竞赛试题中共有25道题,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少选对了_道题。评析:不等式应用题的难点之一是辨别它与方程应用题的异同,如何列出不等式,要善于抓住题中“不低于”、“至少”等字词的数学含义。本题中对“倒扣2分”应理解为不选或选错,实际应扣6分,故当设选对了x道题,则不选或选错题为(25-x)道,则有100-6(25-x)60 解出:x18x=19,即他至少选对了19道题。2、(某市)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队应打15场已负3场,若要想积22分,那么这个队至少还要胜()A、3场B、4场C、5场D、6场评析:一场足球比赛结果有三种情况:胜、平、负,若设还要胜x场,其余为打平,则3x+12-x22推出x5为什么不能列方程:3x+12-x=22,因实际得分小于或等于3x+12-x(以后的比赛中有可能输),故3x+12-x实际得分=22例7.某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%为了提高工人的劳动积极性,按照完成外商订货任务,企业计划从六月份起进行工资改革改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元 (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)? (2)根据经营情况,企业决定每加工1套童装奖励5元工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装? 【分析】(1)五月份工人加工的最少套数为15060%,若设平均每套奖励x元,则该工人的新工资为(200+15060%x),由题意得200+15060%x450; (2)六月份的工资由基本工资200元和奖励工资两部分组成,若设小张六月份加工了y套,则依题意可得200+5y1200 【解答】(1)设企业每套奖励x元,由题意得:200+60%150x450 解得:x2.78 因此,该企业每套至少应奖励2.78元; (2)设小张在六月份加工y套,由题意得:200+5y1200, 解得y200 【点评】本题重点考查学生从生活实际中理解不等关系的能力,对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键练习:1某公司为了扩大经营,决定购进6台机器用于生产某种活塞现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元甲乙价格/(万元/台) 75每台日产量/个10060 (1)按该公司要求可以有几种购买方案? (2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案? 【解析】(1)可设购买甲种机器x台,然后用x表示出购买甲,乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过24万元”列不等式求解 (2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案 解(1)设购买甲种机器x台,则购买乙种机器(6-x)台,则 7x+5(6-x)34 解得x2 又x0 0x2 整数x=0,1,2 可得三种购买方案: 方案一:购买乙种机器6台; 方案二:购买甲种机器1台,乙种机器5台; 方案三:购买甲种机器2台,乙种机器4台 (2)列表如下:日生产量/个总购买资金/万元方案一 360 30方案二 400 32方案三 440 34 由于方案一的日生产量小于380个,因此不选择方案一;方案三比方案二多耗资2万元,故选择方案二 【点评】部分实际问题的解通常为整数;方案的各种情况可以用表格的形式表达2、福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条 (1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人? (2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025地产项目合作开发与绿色建筑技术应用合同
- 2025年度汽车租赁合同细则-含新能源汽车充电支持
- 2025版实习保密协议书及数据保密条款
- 2025年度新能源电池产品全国代理商合作协议
- 2025年酒店餐厅桌椅升级改造采购合同示范
- 2025年智慧城市照明系统电工施工劳务分包合同
- 海南省乐东黎族自治县2025年上半年事业单位公开遴选试题含答案分析
- 2025版石材地质勘探与矿山开采合作协议
- 2025年度多金融机构联合贷款合同
- 2025年高端别墅及私人住宅保洁服务承包合同
- 金融数据分析 课件 欧阳资生 第1-5章 导论、金融时间序列线性模型 -极值事件
- 桁吊操作培训课件
- 企业内部涉密测绘成果使用流程规章制度
- 2024年中国人寿:养老险山东分公司招聘笔试参考题库含答案解析
- 《现场管理培训》课件
- 基于无人机的公路平整度与车辙自动检测
- 中小学消防安全、交通安全、食品安全、防溺水、防欺凌系统安全教育主题课件
- EXCEL制作质控图模版
- 铲车司机安全生产岗位责任制
- 公共艺术美术(中职)PPT全套完整课件
- 新媒体运营PPT完整全套教学课件
评论
0/150
提交评论