高考数学大二轮总复习 增分策略 专题一 集合与常用逻辑用语、不等式 第2讲 不等式与线性规划课件.ppt_第1页
高考数学大二轮总复习 增分策略 专题一 集合与常用逻辑用语、不等式 第2讲 不等式与线性规划课件.ppt_第2页
高考数学大二轮总复习 增分策略 专题一 集合与常用逻辑用语、不等式 第2讲 不等式与线性规划课件.ppt_第3页
高考数学大二轮总复习 增分策略 专题一 集合与常用逻辑用语、不等式 第2讲 不等式与线性规划课件.ppt_第4页
高考数学大二轮总复习 增分策略 专题一 集合与常用逻辑用语、不等式 第2讲 不等式与线性规划课件.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲不等式与线性规划 专题一集合与常用逻辑用语 不等式 高考真题体验 热点分类突破 高考押题精练 栏目索引 高考真题体验 1 2 3 4 a x 21 所以0 x 1 所以原不等式组的解集为 x 0 x 1 故选c c 1 2 3 4 1 2 3 4 解析不等式组所表示的可行域如图所示 答案b 1 2 3 4 3 2015 浙江 有三个房间需要粉刷 粉刷方案要求 每个房间只用一种颜色 且三个房间颜色各不相同 已知三个房间的粉刷面积 单位 m2 分别为x y z 且x y z 三种颜色涂料的粉刷费用 单位 元 m2 分别为a b c 且a b c 在不同的方案中 最低的总费用 单位 元 是 a ax by czb az by cxc ay bz cxd ay bx cz 1 2 3 4 解析令x 1 y 2 z 3 a 1 b 2 c 3 a项 ax by cz 1 4 9 14 b项 az by cx 3 4 3 10 c项 ay bz cx 2 6 3 11 d项 ay bx cz 2 2 9 13 故选b 答案b 1 2 3 4 解析 a b 0 a b 5 考情考向分析 1 利用不等式性质比较大小 利用基本不等式求最值及线性规划问题是高考的热点 2 一元二次不等式常与函数 数列结合考查一元二次不等式的解法和参数取值范围 3 利用不等式解决实际问题 热点一不等式的解法 热点分类突破 1 一元二次不等式的解法先化为一般形式ax2 bx c 0 a 0 再求相应一元二次方程ax2 bx c 0 a 0 的根 最后根据相应二次函数图象与x轴的位置关系 确定一元二次不等式的解集 2 简单分式不等式的解法 3 指数不等式 对数不等式及抽象函数不等式 可利用函数的单调性求解 a x x lg2 b x 1 lg2 d x x lg2 d 2 已知函数f x x 2 ax b 为偶函数 且在 0 单调递增 则f 2 x 0的解集为 a x x 2或x4 d x 0 x 4 解析由题意可知f x f x 即 x 2 ax b x 2 ax b 2a b x 0恒成立 故2a b 0 即b 2a 则f x a x 2 x 2 又函数在 0 单调递增 所以a 0 f 2 x 0即ax x 4 0 解得x4 故选c c 思维升华 1 对于和函数有关的不等式 可先利用函数的单调性进行转化 2 求解一元二次不等式的步骤 第一步 二次项系数化为正数 第二步 解对应的一元二次方程 第三步 若有两个不相等的实根 则利用 大于在两边 小于夹中间 得不等式的解集 3 含参数的不等式的求解 要对参数进行分类讨论 跟踪演练1 1 关于x的不等式x2 2ax 8a20 的解集为 x1 x2 且x2 x1 15 则a 解析由x2 2ax 8a20 所以不等式的解集为 2a 4a 即x2 4a x1 2a 2 已知f x 是r上的减函数 a 3 1 b 0 1 是其图象上两点 则不等式 f 1 lnx 1的解集是 解析 f 1 lnx 1 1 f 1 lnx 1 f 3 f 1 lnx f 0 又 f x 在r上为减函数 0 1 lnx 3 1 lnx 2 热点二基本不等式的应用 利用基本不等式求最大值 最小值 其基本法则是 1 如果x 0 y 0 xy p 定值 当x y时 x y有最小值 简记为 积定 和有最小值 2 如果x 0 y 0 x y s 定值 当x y时 xy有最大值 简记为 和定 积有最大值 解析 a b 3 y 1 2x 0 即2x 3y 3 x 0 y 0 当且仅当3y 2x时取等号 答案c b 思维升华 在利用基本不等式求最值时 要特别注意 拆 拼 凑 等技巧 使其满足基本不等式中 正 即条件要求中字母为正数 定 不等式的另一边必须为定值 等 等号取得的条件 的条件才能应用 否则会出现错误 跟踪演练2 1 2015 天津 已知a 0 b 0 ab 8 则当a的值为 时 log2a log2 2b 取得最大值 当且仅当log2a 1 log2b 即a 2b时 等号成立 此时a 4 b 2 4 解析易知圆x2 y2 2x 4y 1 0的半径为2 圆心为 1 2 因为直线2ax by 2 0 a 0 b 0 被圆x2 y2 2x 4y 1 0截得的弦长为4 所以直线2ax by 2 0 a 0 b 0 过圆心 把圆心坐标代入得 a b 1 答案4 热点三简单的线性规划问题 解决线性规划问题首先要找到可行域 再注意目标函数表示的几何意义 数形结合找到目标函数达到最值时可行域的顶点 或边界上的点 但要注意作图一定要准确 整点问题要验证解决 答案d 解析如图 由y ax z知z的几何意义是直线在y轴上的截距 故当a 0时 要使z y ax取得最大值的最优解不唯一 则a 2 当a 0时 要使z y ax取得最大值的最优解不唯一 则a 1 答案d 思维升华 1 线性规划问题一般有三种题型 一是求最值 二是求区域面积 三是确定目标函数中的字母系数的取值范围 2 一般情况下 目标函数的最大或最小值会在可行域的端点或边界上取得 a 1b 2c 3d 7 解析依题意 不等式组所表示的可行域如图所示 阴影部分 观察图象可知 当目标函数z 2x y过点b a a 时 zmin 2a a 3a 因为目标函数z 2x y的最小值为9 所以3a 9 解得a 3 故选c 答案c 高考押题精练 1 2 3 4 1 若点a a b 在第一象限 且在直线x 2y 1上 则ab的最大值为 押题依据基本不等式在历年高考中的地位都很重要 已成为高考的重点和热点 用基本不等式求函数 和式或积式 的最值问题 有时与解析几何 数列等知识相结合 1 2 3 4 解析因为点a a b 在第一象限 且在直线x 2y 1上 所以a 0 b 0 且a 2b 1 答案d 1 2 3 4 a 2b 2c 4d 6 押题依据线性规划是每年高考的热点 其实质是数形结合思想的应用 本题中目标函数用向量数量积形式给出 符合高考知识点交汇命题的思想 1 2 3 4 解析画出不等式组所表示的可行域为如图所示的 ecd的内部 包括边界 其中e 2 6 c 2 0 d 0 2 令直线l y x z 要使直线l过可行域上的点且在y轴上的截距 z取得最大值 只需直线l过点e 2 6 此时z取得最小值 且最小值zmin 2 6 4 故选c 答案c 1 2 3 4 押题依据不等式的解法作为数学解题的一个基本工具 在高考中是必考内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论