




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(二十) 点到直线的距离公式一、基本能力达标1已知A(2,4),B(1,5)两点到直线l:axy10的距离相等,则实数a的值为()A3B3C3或3 D1或3解析:选C由题意得,解得a3或3.2点P(3,4)关于直线xy20的对称点Q的坐标是()A(2,1)B(2,5)C(2,5) D(4,3)解析:选B设对称点坐标为(a,b),解得即Q(2,5)3已知点P在直线3xy50上,且点P到直线xy10的距离为,则点P的坐标为()A(1,2)或(2,1) B(3,4)C(2,1) D(1,2)解析:选A设点P的坐标为(a,53a),由题意,得,解得a1或2,点P的坐标为(1,2)或(2,1)4点P(x,y)在直线xy40上,O是坐标原点,则|OP|的最小值是()A. B.C2 D.解析:选C|OP|最小即OPl时,|OP|min2.5已知两直线2x3y30与mx6y10平行,则它们间的距离等于()A. B.C. D4解析:选C直线2x3y30的斜率k1,直线mx6y10的斜率k2,得m4.它们间的距离d.6直线2xy10与直线6x3y100的距离是_解析:法一:在方程2xy10中令x0,则y1,即(0,1)为直线上的一点由点到直线的距离公式,得所求距离为.法二:直线2xy10可化为6x3y30,则所求距离为.答案:7若直线l到直线x2y40的距离和原点到直线l的距离相等,则直线l的方程是_解析:由题意设所求l的方程为x2yC0,则,解得C2,故直线l的方程为x2y20.答案:x2y208过点M(2,1)且与A(1,2),B(3,0)两点距离相等的直线的方程为_解析:由题意直线存在斜率设直线的方程为y1k(x2),即kxy2k10.由,解得k0,或k.故直线的方程为y1,或x2y0.答案:y1或x2y09已知直线l:(2ab)x(ab)yab0及点P(3,4)(1)证明直线l过某定点,并求该定点的坐标(2)当点P到直线l的距离最大时,求直线l的方程解:(1)证明:直线l的方程可化为a(2xy1)b(xy1)0,由得直线l恒过定点(2,3)(2)因为直线l恒过定点A(2,3),当直线l垂直于直线PA时,点P到直线l的距离最大又直线PA的斜率kPA,直线l的斜率kl5.故直线l的方程为y35(x2),即5xy70.10已知ABC三个顶点坐标A(1,3),B(3,0),C(1,2),求ABC的面积S.解:由直线方程的两点式得直线BC的方程为,即x2y30.由两点间距离公式得|BC|2,点A到BC的距离为d,即为BC边上的高,d,所以S|BC|d24,即ABC的面积为4.二、综合能力提升1两平行线分别经过点A(5,0),B(0,12),它们之间的距离d满足的条件是()A0d5B0d13C0d12 D5d12解析:选B当两平行线与AB垂直时,两平行线间的距离最大,为|AB|13,所以0d13.2若动点A(x1,y1),B(x2,y2)分别在直线l1:xy70和l2:xy50上移动,则AB的中点M到原点距离的最小值是()A3 B2C3 D4解析:选A由题意,结合图形可知点M必然在直线xy60上,故M到原点的最小距离为3.3到直线3x4y110的距离为2的直线方程为()A3x4y10B3x4y10或3x4y210C3x4y10D3x4y210解析:选B设所求的直线方程为3x4yc0.由题意2,解得c1或c21.故选B.4直线2x3y60关于点(1,1)对称的直线方程是()A3x2y60 B2x3y70C3x2y120 D2x3y80解析:选D法一:设所求直线的方程为2x3yc0,由题意可知.c6(舍)或c8.故所求直线的方程为2x3y80.法二:令(x0,y0)为所求直线上任意一点,则点(x0,y0)关于(1,1)的对称点为(2x0,2y0),此点在直线2x3y60上,代入可得所求直线方程为2x3y80.5倾斜角为60,并且与原点的距离是5的直线方程为_解析:因为直线斜率为tan 60,可设直线方程为yxb,化为一般式得xyb0.由直线与原点距离为5,得5|b|10.所以b10,所以所求直线方程为xy100或xy100.答案:xy100或 xy1006若直线l经过点A(5,10),且坐标原点到直线l的距离为10,则直线l的方程是_解析:k存在时,设直线方程为y10k(x5),10.k或k0.y10(x5)或y10.k不存在时,x5不符合题意综上所述,4x3y500或y10为所求答案:4x3y500或y107直线l经过A(2,4),且被平行直线xy10与xy10所截得的线段的中点在直线xy30上,求直线l的方程解:法一:设所求的直线的斜率为k,直线l和平行直线xy10、xy10的交点分别为P,B.则所求直线l的方程为y4k(x2)由可解得P;由可解得B.P,B的中点D的坐标为.又D在直线xy30上,30,解得k5.所以,所求直线的方程为y45(x2),即5xy60.法二:与xy10及xy10等距离的直线必定与它们是平行的,所以设xyc0,从而,解之得,c0,xy0,又截得的线段的中点在xy30上,由可解得中点坐标为,所以直线l过点(2,4)和,从而得l的方程为5xy60.探究应用题8已知直线l过点P(0,1),且分别与直线l1:2xy80和l2:x3y100交于B,A两点,线段AB恰被点P平分(1)求直线l的方程;(2)设点D(0,m),且ADl1,求ABD的面积解:(1)点B在直线l1上,可设B(a,82a)又P(0,1)是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 账户知识培训简报课件
- 象棋的课件教学课件
- 2025版天花吊顶工程智能化设计与施工合同
- 2025年度水电工程绿色施工与节能减排承包合同样本
- 2025版啤酒行业风险管理与保险合同
- 2025版全新智能电网建设项目施工合同编号下载
- 2025版石材长途运输合同及风险防控协议
- 2025版汽车用品试用销售与售后服务合同
- 2025年度东昌府区交通运输局交通设施租赁合同
- 2025版洗煤厂租赁合同及设备更新改造责任书
- 基础护理学题库及答案
- 《遵守校纪班规》课件
- 走进焊接 课件 2.1百花齐放推陈出新-焊接方法
- 北京市律师协会律师办理法律尽职调查业务操作指引
- (2025年标准)会员销售协议书
- 2025至2030中国专业图片存档和通信系统(PACS)行业项目调研及市场前景预测评估报告
- 难治性痛风中西医结合诊疗专家共识解读 4
- 献县地热管理办法
- 教育测量与评价 课件全套 朱德全 第1-15章 教育测量与评价概述- 教育测评结果的统计处理
- 财务共享模式下中储粮财务集中管理研究
- 2024-2025学年四川省成都市蒲江县蒲江中学高三上学期调研摸底考试数学试卷
评论
0/150
提交评论