河南省新乡市长垣县第十中学高中数学 2.5等比数列的前n项和(一)课件 新人教A版必修5.ppt_第1页
河南省新乡市长垣县第十中学高中数学 2.5等比数列的前n项和(一)课件 新人教A版必修5.ppt_第2页
河南省新乡市长垣县第十中学高中数学 2.5等比数列的前n项和(一)课件 新人教A版必修5.ppt_第3页
河南省新乡市长垣县第十中学高中数学 2.5等比数列的前n项和(一)课件 新人教A版必修5.ppt_第4页
河南省新乡市长垣县第十中学高中数学 2.5等比数列的前n项和(一)课件 新人教A版必修5.ppt_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 5等比数列的前n项和 复习 n 2 传说在古代印度 国王要奖赏国际象棋的发明者 发明者说 请在棋盘的第1个格子里放上1颗麦粒 在第2个格子里放上2颗麦粒 在第3个格子里放上4颗麦粒 在第4个格子里放上8颗麦粒 依此类推 每个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍 直到第64个格子 请给我足够的粮食来实现上述要求 国王觉得并不难 就欣然同意了他的要求 你认为国王有能力满足发明者的要求吗 分析 由于每个格子里的麦粒数都是前一个格子里的麦粒数的2倍 且共有64个格子 各个格子里的麦粒数依次是 棋盘与麦粒 于是发明者要求的麦粒总数就是 问题 求以1为首项 2为公比的等比数列的前64项的和 两边同乘公比 得 得 说明 超过了1 84 假定千粒麦子的质量为40g 那么麦粒的总质量超过了7000亿吨 所以国王是不可能同意发明者的要求 得 由此得q 1时 等比数列的前n项和 说明 这种求和方法称为错位相减法 当q 1时 显然 当q 1时 等比数列的前n项和表述为 证法一 sn a1 a2 an a1 a1q a1q2 a1qn 2 a1qn 1 qsn a1q a1q2 a1qn 1 a1qn 得 sn qsn a1 a1qn 证法二 sn a1 a1q a1q2 a1qn 2 a1qn 1 a1 q a1 a1q a1qn 2 a1 q sn an 证法三 练习1 根据下列条件 只需列出等比数列 的 的式子 或 例2 某商场今年销售计算机5000台 如果平均每年的销售量比上一年的销售量增加10 那么从今起 大约几年可使总销售量达到30000台 结果保留到个位 分析 第1年产量为5000台 第2年产量为 5000 1 10 5000 1 1台 第3年产量为 5000 1 10 1 10 则n年内的总产量为 解 由题意 从第1年起 每年的销售量组成一个等比数列 其中 即 两边取常用对数 得 例2 某商场今年销售计算机5000台 如果平均每年的销售量比上一年的销售量增加10 那么从今起 大约几年可使总销售量达到30000台 结果保留到个位 小结 s s 注意 在应用等比数列的前n项和公式时考虑 倒序相加 错位相减 公比是否为1 1 已知数列前n项和sn 2n 1 则此数列的奇数项的前n项的和是 2 设 an 为等差数列 bn 为等比数列 a1 b1 1 a2 a4 b3 b2b4 a3分别求出 an 及 bn 的前10项的和s10及t10 3 设 an 为等比数列 tn na1 n一1 a2 2an 1 an 已知t1 1 t2 4 1 求数列 an 的首项和公比 2 求数列 tn 的通项公式 求和 an 1 aan b的数列通项 例 求数列 an 的通项公式 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论