2017函数教案.doc_第1页
2017函数教案.doc_第2页
2017函数教案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.7(第三 课时 对数的换底公式)教学目的:掌握对数的换底公式,并能解决有关的化简、求值、证明问题。教学重点:换底公式及推论教学难点:换底公式的证明和灵活应用.教学过程:一、 复习:对数的运算法则导入新课:对数的运算的前提条件是“同底”,如果底不同怎么办?二、新授内容:1.对数换底公式: ( a 0 ,a 1 ,m 0 ,m 1,N0) 证明:设 N = x , 则 = N 两边取以m 为底的对数: 从而得: 2常用的推论:, ( a, b 0且均不为1,m0)三、例题:例1 已知 3 = a, 7 = b, 用 a, b 表示 56解:因为3 = a,则 , 又7 = b, 例2计算: 解:原式 = 原式 = 例3设 且 (1) 求证 ; (2) 比较的大小。 证明(1):设 取对数得: , , (2) 又: 例4已知x=c+b,求x分析:由于x作为真数,故可直接利用对数定义求解;另外,由于等式右端为两实数和的形式,b的存在使变形产生困难,故可考虑将c移到等式左端,或者将b变为对数形式。解法一:由对数定义可知:解法二:由已知移项可得 ,即由对数定义知: 解法三: 例5 计算: 解:原式 例6.若 求 m 解:由题意: 四、课后作业

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论