作业答案.doc_第1页
作业答案.doc_第2页
作业答案.doc_第3页
作业答案.doc_第4页
作业答案.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 波函数和薛定谔方程2.1 证明在定态中,几率流密度与时间无关。证:在定态中,波函数可写成:并由此有:代入几率流密度的定义式则有:即 仅是空间坐标的函数,与时间无关。2.2 由下列两定态波函数计算几率流密度。(1) (2)从所得结果说明表示向外传播的球面波,表示向内(即向原点)传播的球面波。解 因 ,则 所以 上述结果说明的方向沿矢经的方向,即几率沿方向向外流动,所以表示向外传播的球面波。(2) 与(1)类似,求得 此结果表明的方向沿矢经的负方向,即几率流流向原点,所以表示向内传播的球面波。2.3 一粒子在一维势场中运动,求粒子的能级和对应的波函数。解:由于势函数不随时间变化体系的状态波函数满足定态Schrdinger方程其中表示粒子的质量。 令 (1) (2) (3) (4) (5) (6)当 时,由(4)式和(5)式有 (7)根据波函数的连续性,(6)式和(7)式所表示的波函数分别在和处连续:由此得 代入(1)式中的第一式,可得体系的能量: 即粒子在势阱中运动的能量只能取分立值,对应的波函数:由波函数的归一化条件,求得2.4 证明(2.614)式中的归一化常数证 已知(2.614)式的形式由波函数的归一化条件 ,有:所以 2.5 求一维谐振子处在第一激发态时几率最大的位置解 由谐振子状态波函数 得到振子在点处出现的几率密度当时,由 有, or 即振子处在第一激发态时几率最大的位置2.6 在一维势场中运动的粒子,势能对原点对称:,试证明粒子的定态波函数具有确定的宇称。证:由于势函数与时间无关,粒子的波函数满足定态Schrdinger方程:(1)其中是粒子的质量。将空间反演:(2)因为 所以(2)式可以写成(3)因而,和都是体系哈密顿算符本征方程属于同一本征值的解,描写同一个状态,它们之间只可能相差一常数 引入空间反演算符,写成:空间再反演一次,有 写成:则有 或 所以 (对称的,即具有偶宇称) (反对称的,即具有奇宇称)由此证得在一维势场中运动的粒子,当时,粒子的波函数具有确定宇称。IIII2.7 一粒子在一维势阱运动,求束缚态()的能级所满足的方程解 因与时间无关,体系的波函数满足定态Schrdinger方程:即 令 在 的情况下,均为实数。以上方程可简写成 方程的解为:由波函数及其一阶微商,在,处连续,即:(1): (2):(3):(4)由(1)、(3)两式,可得(5)由(2)、(4)两式,可得(6)比较(5)式和(6)式, 将 分别代入(5)式(或(6)式) (7) (8)将、值代入(7)式和(8)式,则得到能量所满足的方程(9)(10)由此可见,体系的能量值由超越方程(7)和(8)(或(9)和(10)解出,它们可以用如下图解法求解,令(11)(12)能级,就可以由以下曲线交点(如果有的话)获得,即分别求曲线方程组: 或 在,区域内的交点,如下图所示:从图可以看到,束缚态的数目随园的半径增加而增加,即随乘积(“势阱参量”)的增加而增加,如果是有限的,则束缚态的数目也是有限的。如果,则束缚态的数目是个附 求对应的本征波函数,为此将代入(1)、(2)式,有所以得到一组解(13)同理,将代入(1)、(2)式,有,于是得到另一组解(14)第一组解是奇函数,第二组解是偶函数,因而体系的波函数具有确定宇称。这正是势场所导致的必然结果。奇宇称解(13)对应由(7)式或(9)式确定的能 量,偶宇称解(14)对应由(8)式或(10)确定的能量。、为归一化常数,由归一化条件确定。2.8 分子间的范德瓦尔斯力所产生的势能可以近似地表示求束缚态的能级所满足的方程。解:由于势函数不显含时间,因而,体系的波函数满足Schrdinger方程代入势函数的形式,则考虑的情形,令,于是上述的微分方程组对写成求解以上方程,并考虑到在的区域内粒子出现的几率密度为零以及在,粒子出现

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论