




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【典型例题】:1、已知,求的值解:因为,又,联立得解这个方程组得2、求的值。解:原式3、若,求的值解:法一:因为所以得到,又,联立方程组,解得所以法二:因为所以,所以,所以,所以有4、 求证:。 5、求函数在区间上的值域。解:因为,所以,由正弦函数的图象,得到,所以6、求下列函数的值域(1); (2))解:(1)=令,则利用二次函数的图象得到(2) = 令,则则利用二次函数的图象得到7、若函数y=Asin(x+)(0,0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式。解:由最高点为,得到,最高点和最低点间隔是半个周期,从而与x轴交点的间隔是个周期,这样求得,T=16,所以又由,得到可以取8、已知函数f(x)=cos4x2sinxcosxsin4x()求f(x)的最小正周期; ()若求f(x)的最大值、最小值数的值域解:()因为f(x)=cos4x2sinxcosxsin4x(cos2xsin2x)(cos2xsin2x)sin2x所以最小正周期为()若,则,所以当x=0时,f(x)取最大值为当时,f(x)取最小值为9、已知,求(1);(2)的值.解:(1); (2) .说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。10、求函数的值域。解:设,则原函数可化为,因为,所以当时,当时,所以,函数的值域为。11、已知函数;(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解: (1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,所以成立,从而函数的图像关于直线对称。12 、已知函数y=cos2x+sinxcosx+1 (xR),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(xR)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos2x+sinxcosx+1= (2cos2x1)+ +(2sinxcosx)+1=cos2x+sin2x+=(cos2xsin+sin2xcos)+=sin(2x+)+所以y取最大值时,只需2x+=+2k,(kZ),即 x=+k,(kZ)。所以当函数y取最大值时,自变量x的集合为x|x=+k,kZ(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像; (iv)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2023学年上海华东师范大学二附中高一(上)期中考试语文试题
- 肥胖与癌症关联性及体重管理
- 互助养老合同(标准版)
- 2025-2026学年度导游资格考试经典例题(A卷)附答案详解
- 综合楼六类标准综合布线工程招标文件
- 职称计算机模拟题库及参考答案详解【A卷】
- 2025年绿色建筑材料市场推广与政策支持下的绿色建筑市场风险防控与应对策略研究报告
- 2025年工业互联网平台云计算资源动态分配在智能供应链管理中的应用策略研究报告
- 中小学假期安全教育班会怎么开展(34篇)
- 中小学学校管理制度(30篇)
- 2025年安徽省中澳科技职业学院人事代理专职辅导员招聘最终高频重点提升(共500题)附带答案详解
- 碳足迹研究-洞察分析
- 空间叙事身体性思考
- 呼吸困难患者的急救与护理
- 燃气热水器安全教育
- 五年(2020-2024)高考地理真题分类汇编专题02(地球运动)+原卷版
- 2024年山东省济南市中考语文试题卷(含答案)
- 【蚂蚁保】2024中国商业医疗险发展研究蓝皮书
- 工作生活平衡总结
- 装配式建筑装饰装修技术 课件 模块五 装配式隔墙
- 药事管理工作制度及操作规程
评论
0/150
提交评论