




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时排列与排列数公式学习目标1.了解排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题知识点一排列的定义从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动思考让你安排这项活动需要分几步?答案分两步第1步确定上午的同学;第2步确定下午的同学梳理一般地,从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列知识点二排列数及排列数公式思考从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的3位数?答案43224(个)梳理排列数定义从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数排列数表示法a排列数公式乘积式an(n1)(n2)(nm1)阶乘式a性质an!,0!1备注n,mn*,mn1a,b,c与b,a,c是同一个排列()2同一个排列中,同一个元素不能重复出现()3在一个排列中,若交换两个元素的位置,则该排列不发生变化()4从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列()类型一排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信考点排列的概念题点排列的判断解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题(2)植树和种菜是不同的,存在顺序问题,属于排列问题(3)(4)不存在顺序问题,不属于排列问题(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题(6)a给b写信与b给a写信是不同的,所以存在着顺序问题,属于排列问题所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题反思与感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合m1,2,9中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程1?可以得到多少个焦点在x轴上的双曲线方程1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?考点排列的概念题点排列的判断解(1)第一问不是排列问题,第二问是排列问题“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题(2)第一问不是排列问题,第二问是排列问题若方程1表示焦点在x轴上的椭圆,则必有ab,a,b的大小关系一定;在双曲线1中,不管ab还是ab,方程1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题(3)确定直线不是排列问题,确定射线是排列问题类型二排列的列举问题例2(1)从1,2,3,4四个数字中任取两个数字组成两位不同的数,一共可以组成多少个?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列考点排列的概念题点列举所有排列解(1)由题意作“树状图”,如下故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个(2)由题意作“树状图”,如下故所有的排列为abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.反思与感悟利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列跟踪训练2写出a,b,c,d四名同学站成一排照相,a不站在两端的所有可能站法考点排列的概念题点列举所有排列解由题意作“树状图”,如下,故所有可能的站法是bacd,badc,bcad,bdac,cabd,cadb,cbad,cdab,dabc,dacb,dbac,dcab.类型三排列数公式及应用例3(1)用排列数表示(55n)(56n)(69n)(nn*且,n55);(2)计算;(3)求证:aama.考点排列数公式题点利用排列数公式计算(1)解因为55n,56n,69n中的最大数为69n,且共有69n(55n)115(个)元素,所以(55n)(56n)(69n)a.(2)解1.(3)证明方法一因为aamma,所以aama.方法二a表示从n1个元素中取出m个元素的排列个数,其中不含元素a1的有a个含有a1的可这样进行排列:先排a1,有m种排法,再从另外n个元素中取出m1个元素排在剩下的m1个位置上,有a种排法故amaa,所以maaa.反思与感悟排列数公式的形式及选择方法排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式跟踪训练3不等式a6a的解集为()a2,8 b2,6 c(7,12) d8考点排列数公式题点解含有排列数的方程或不等式答案d解析由a6a,得6,化简得x219x840,解得7x13可表示为()aa ba ca da考点排列数公式题点利用排列数公式计算答案b解析从(x3),(x4),到(x13)共(x3)(x13)111(个)数,所以根据排列数公式知(x3)(x4)(x5)(x12)(x13)a.4从5本不同的书中选2本送给2名同学,每人1本,不同的送法种数为()a5 b10 c15 d20考点排列的应用题点无限制条件的排列问题答案d5解方程a140a.考点排列数公式题点解含有排列数的方程或不等式解根据题意,原方程等价于即整理得4x235x690(x3,xn*),解得x3.1判断一个问题是否是排列问题的思路排列的根本特征是每一个排列不仅与选取的元素有关,而且与元素的排列顺序有关这就说,在判断一个问题是否是排列问题时,可以考虑所取出的元素,任意交换两个,若结果变化,则是排列问题,否则不是排列问题2关于排列数的两个公式(1)排列数的第一个公式an(n1)(n2)(nm1)适用m已知的排列数的计算以及排列数的方程和不等式在运用时要注意它的特点,从n起连续写出m个数的乘积即可(2)排列数的第二个公式a用于与排列数有关的证明、解方程、解不等式等,在具体运用时,应注意先提取公因式再计算,同时还要注意隐含条件“n,mn*,mn”的运用一、选择题1a9101112,则m等于()a3 b4 c5 d6考点排列数公式题点利用排列数公式计算答案b2已知下列问题:从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;从甲、乙、丙三名同学中选出两人参加一项活动;从a,b,c,d中选出3个字母;从1,2,3,4,5这五个数字中取出2个数字组成一个两位数其中是排列问题的有()a1个 b2个 c3个 d4个考点排列的概念题点排列的判断答案b解析由排列的定义知是排列问题3与aa不相等的是()aa b81a c10a da考点排列数公式题点利用排列数公式证明答案b解析aa10987!a10aa,81a9aa,故选b.4甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为()a6 b4 c8 d10考点排列的概念题点列举所有排列答案b解析列树状图如下:丙甲乙乙甲乙甲丙丙甲故组成的排列为丙甲乙,丙乙甲,乙甲丙,乙丙甲,共4种5从2,3,5,7四个数中任选两个分别相除,则得到的不同结果有()a6个 b10个 c12个 d16个考点排列的应用题点无限制条件的排列问题答案c解析不同结果有a4312(个)6下列各式中与排列数a相等的是()a. bn(n1)(n2)(nm)c. daa考点排列数公式题点利用排列数公式证明答案d解析a,而aan,aaa.7四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为()a6 b9 c12 d24考点排列的概念题点列举所有排列答案b解析这四位数列举为如下:1 012,1 021,1 102,1 120,1 201,1 210,2 011,2 101,2 110,共9个二、填空题8从a,b,c,d,e五个元素中每次取出三个元素,可组成_个以b为首的不同的排列,它们分别是_考点排列的概念题点列举所有排列答案12bac,bad,bae,bca,bcd,bce,bda,bdc,bde,bea,bec,bed解析画出树状图如下:可知共12个,它们分别是bac,bad,bae,bca,bcd,bce,bda,bdc,bde,bea,bec,bed.9若集合px|xa,mn*,则集合p中共有_个元素考点排列数公式题点利用排列数公式计算答案3解析由题意知,m1,2,3,4,由aa,故集合p中共有3个元素10满足不等式12的n的最小值为_考点排列数公式题点解含有排列数的方程或不等式答案10解析12,得(n5)(n6)12,解得 n9或n2(舍去)最小正整数n的值为10.112017北京车展期间,某调研机构准备从5人中选3人去调查e1馆、e3馆、e4馆的参观人数,不同的安排方法种数为_考点排列的应用题点无限制条件的排列问题答案60解析由题意可知,问题为从5个元素中选3个元素的排列问题,所以安排方法有54360(种)12由1,4,5,x四个数字组成没有重复数字的四位数,所有这些四位数的各数位上的数字之和为288,则x_.考点排列的应用题点无限制条件的排列问题答案2解析当x0时,有a24(个)四位数,每个四位数的数字之和为145x,故24(145x)288,解得x2;当x0时,每个四位数的数字之和为14510,而288不能被10整除,即x0不符合题意,综上可知,x2.三、解答题13一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?考点排列的应用题点无限制条件的排列问题解由题意可得aa58,即(n2)(n1)n(n1)58,解得n14.所以原有车站14个,现有车站16个四、探究与拓展14若saaaaa,则s的个位数字是()a8 b5 c3 d0考点排列数公式题点利用排列数公式计算答案c解析1!1,2!2,3!6,4!24,5!120,而6!65!,7!765!,100!1009965!,所以从5!开始到100!,个位数字均为0,所以s的个位数字为3.15京沪高速铁路自北京南站至上海虹桥站,双线铁路全长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB54T 0495-2025 高寒草甸退化分级标准
- 二零二五年度房地产联合开发合同-文化产业园地产合作
- 2025版生物科技产业合伙投资框架协议
- 2025版特色药品代理销售合作合同
- 二零二五年脚手架租赁服务与施工协调合同
- 2025版路灯工程知识产权共享合同范本
- 2025版会议场地租赁及绿色环保设施配套合同
- 2025版瑜伽馆投资合作协议
- 二零二五年船舶燃油行业标准制定与实施合同
- 2025年度智能家居安装与维护服务合同
- JG/T 348-2011纤维增强混凝土装饰墙板
- 2025云南楚雄州金江能源集团有限公司选聘中层管理人员7人笔试参考题库附带答案详解析版
- 2025年征兵心理测试题及答案
- T/CECS 10274-2023防沉降井盖
- 消防吸水操作训练课件
- 新能源电池商业计划书
- 2025年法学概论考试有效模拟试题及答案
- (高清版)DGJ 08-10-2004 城市煤气、天然气管道技术规程
- 《营养指南课件:食品标签与营养成分解读》
- TCHSA-023-2023-口腔综合治疗台水路污染控制与管理指南
- 儿科三基护理试题及答案
评论
0/150
提交评论