高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学案 新人教A版选修23.doc_第1页
高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学案 新人教A版选修23.doc_第2页
高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学案 新人教A版选修23.doc_第3页
高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学案 新人教A版选修23.doc_第4页
高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学案 新人教A版选修23.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3.1离散型随机变量的均值学习目标:1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值(重点)2.掌握两点分布、二项分布的均值(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题(难点)自 主 预 习探 新 知1离散型随机变量的均值(1)定义:若离散型随机变量x的分布列为:xx1x2xixnpp1p2pipn则称e(x)x1p1x2p2xipixnpn为随机变量x的均值或数学期望(2)意义:它反映了离散型随机变量取值的平均水平(3)性质:如果x为(离散型)随机变量,则yaxb(其中a,b为常数)也是随机变量,且p(yaxib)p(xxi),i1,2,3,n.e(y)e(axb)ae(x)b.2两点分布和二项分布的均值(1)若x服从两点分布,则e(x)p;(2)若xb(n,p),则e(x)np.3随机变量的均值与样本平均值的关系随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值基础自测1判断(正确的打“”,错误的打“”)(1)随机变量x的数学期望e(x)是个变量,其随x的变化而变化;()(2)随机变量的均值反映样本的平均水平;()(3)若随机变量x的数学期望e(x)2,则e(2x)4;()(4)随机变量x的均值e(x).()解析(1)随机变量的数学期望e(x)是个常量,是随机变量x本身固有的一个数字特征(2)随机变量的均值反映随机变量取值的平均水平(3)由均值的性质可知(4)因为e(x)x1p1x2p2xnpn.答案(1)(2)(3)(4)2若随机变量x的分布列为x101p则e(x)()a0b1c dce(x)ipi(1)01.3设e(x)10,则e(3x5)_.35e(3x5)3e(x)5310535.4若随机变量x服从二项分布b,则e(x)的值为_.【导学号:95032178】e(x)np4.合 作 探 究攻 重 难求离散型随机变量的均值某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数x的分布列和x的均值解x的取值分别为1,2,3,4.x1,表明李明第一次参加驾照考试就通过了,故p(x1)0.6.x2,表明李明在第一次考试未通过,第二次通过了,故p(x2)(10.6)0.70.28.x3,表明李明在第一、二次考试未通过,第三次通过了,故p(x3)(10.6)(10.7)0.80.096.x4,表明李明第一、二、三次考试都未通过,故p(x4)(10.6)(10.7)(10.8)0.024.所以李明实际参加考试次数x的分布列为xk1234p(xk)0.60.280.0960.024所以x的均值为e(x)10.620.2830.09640.0241.544.规律方法求离散型随机变量x的均值步骤(1)理解x的实际意义,并写出x的全部取值(2)求出x取每个值的概率(3)写出x的分布列(有时也可省略)(4)利用定义公式e(x)x1p1x2p2xnpn求出均值其中第(1)、(2)两条是解答此类题目的关键,在求解过程中要注重运用概率的相关知识跟踪训练1盒中装有5节同牌号的五号电池,其中混有两节废电池现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数x的分布列及均值解x可取的值为1,2,3,则p(x1),p(x2),p(x3)1.抽取次数x的分布列为x123pe(x)123.离散型随机变量的均值公式及性质已知随机变量x的分布列如下:x21012pm(1)求m的值;(2)求e(x);(3)若y2x3,求e(y). 【导学号:95032179】解(1)由随机变量分布列的性质,得m1,解得m.(2)e(x)(2)(1)012.(3)法一:(公式法)由公式e(axb)ae(x)b,得e(y)e(2x3)2e(x)323.法二:(直接法)由于y2x3,所以y的分布列如下:y75311p所以e(y)(7)(5)(3)(1)1.规律方法1该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,e(x)x1p1x2p2xnpn求解2对于axb型的随机变量,可利用均值的性质求解,即e(axb)ae(x)b;也可以先列出axb的分布列,再用均值公式求解,比较两种方式显然前者较方便跟踪训练2已知随机变量x的分布列为x123p且yax3,若e(y)2,则a的值为_3e(x)123.yax3,e(y)ae(x)3a32.解得a3.两点分布与二项分布的均值某运动员投篮命中率为p0.6.(1)求投篮1次时命中次数x的均值;(2)求重复5次投篮时,命中次数y的均值. 【导学号:95032180】思路探究(1)利用两点分布求解(2)利用二项分布的数学期望公式求解解(1)投篮1次,命中次数x的分布列如下表:x01p0.40.6则e(x)0.6.(2)由题意,重复5次投篮,命中的次数y服从二项分布,即yb(5,0.6),则e(y)np50.63.母题探究:1.(变换条件)求重复10次投篮时,命中次数的均值解e()100.66.2(改变问法)重复5次投篮时,命中次数为y,命中一次得3分,求5次投篮得分的均值解设投篮得分为变量,则3y.所以e()e(3y)3e(y)339.规律方法1常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布e(x)p;(2)二项分布e(x)np.熟练应用上述公式可大大减少运算量,提高解题速度2两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生(2)不同点:随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x0,1,2,n.试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验离散型随机变量均值的实际应用探究问题1某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,则他罚球一次的得分x可以取哪些值?x取每个值时的概率是多少?提示随机变量x可能取值为0,1.x取每个值的概率分别为p(x0)0.3,p(x1)0.7.2在探究1中,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?提示每次平均得分为0.8.3在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?提示在球星的各场比赛中,罚球一次的得分大约为00.310.70.7(分)因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量x的数学期望来描述他总体得分的平均水平具体到每一场比赛罚球一次的平均得分应该是非常接近x的均值的一个分数随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为x.(1)求x的分布列;(2)求1件产品的平均利润(即x的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少? 【导学号:95032181】思路探究 解(1)x的所有可能取值有6,2,1,2.p(x6)0.63,p(x2)0.25,p(x1)0.1,p(x2)0.02.故x的分布列为:x6212p0.630.250.10.02(2)e(x)60.6320.2510.1(2)0.024.34.(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为e(x)60.72(10.70.01x)1x(2)0.014.76x(0x0.29)依题意,e(x)4.73,即4.76x4.73,解得x0.03,所以三等品率最多为3%.规律方法1实际问题中的均值问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的均值来进行估计2概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些(2)确定随机变量的分布列,计算随机变量的均值(3)对照实际意义,回答概率,均值等所表示的结论跟踪训练3在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4,0.1,0.5;战士乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名战士获胜希望较大的是谁?解设这次射击比赛战士甲得x1分,战士乙得x2分,则分布列分别如下:x1123p0.40.10.5x2123p0.10.60.3根据均值公式得e(x1)10.420.130.52.1;e(x2)10.120.630.32.2;因为e(x2)e(x1),故这次射击比赛战士乙得分的均值较大,所以战士乙获胜的希望较大当 堂 达 标固 双 基1若随机变量xb(5,0.8),则e(x)()a0.8b4c5 d3be(x)np50.84.故选b.2设随机变量x的分布列为p(xk),k1,2,3,4,则e(x)的值为() 【导学号:95032182】a2.5 b3.5c0.25 d2ae(x)12342.5.3袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设x是取得红球的次数, 则e(x)_.每一次摸得红球的概率为,由xb,则e(x)4.4已知xb,则e(2x3)_.103e(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论