免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题05 函数的单调性与最值1下列函数中,既是偶函数又在(0,)内单调递减的函数是()ayx2by|x|1cylg|x| dy2|x|【解析】对于c中函数,当x0时,ylgx,故为(0,)上的减函数,且ylg |x|为偶函数【答案】c2已知函数f(x)为r上的减函数,则满足f(|x|)f(1)的实数x的取值范围是()a(1,1) b(0,1)c(1,0)(0,1) d(,1)(1,)【答案】d3若函数yax与y在(0,)上都是减函数,则yax2bx在(0,)上是()a增函数 b减函数c先增后减 d先减后增【解析】 yax与y在(0,)上都是减函数,a0,b0,yax2bx的对称轴方程x0,yax2bx在(0,)上为减函数【答案】b4设函数f(x)g(x)x2f(x1),则函数g(x)的递减区间是 ()a(,0 b0,1)c1,) d1,0【解析】g(x)如图所示,其递减区间是0,1)故选b.【答案】b5函数yx22x3(x0)的单调增区间是()a(0,) b(,1c(,0) d(,1【答案】c6设函数yf(x)在(,)内有定义,对于给定的正数k,定义函数fk(x)取函数f(x)2|x|,当k时,函数fk(x)的单调递增区间为 ()a(,0) b(0,) c(,1) d(1,)【解析】f(x)f(x)f(x)的图象如右图所示,因此f(x)的单调递增区间为(,1)【答案】c7设函数yx22x,x2,a,若函数的最小值为g(a),则g(a)_.【解析】函数yx22x(x1)21,对称轴为直线x1.当2a0)对于下列命题:函数f(x)的最小值是1;函数f(x)在r上是单调函数;若f(x)0在上恒成立,则a的取值范围是a1;对任意的x10,x20且x1x2,恒有f0在上恒成立,则2a10,a1,故正确;由图象可知在(,0)上对任意的x10,x20且x1x2,恒有f0且a1)的单调区间解 当a1时,函数ya1x2在区间0,)上是减函数,在区间(,0上是增函数;当0a0恒成立,则a16.13已知函数f(x)a2xb3x,其中常数a,b满足ab0.(1)若ab0,判断函数f(x)的单调性;(2)若abf(x)时的x的取值范围解(1)当a0,b0时,因为a2x,b3x都单调递增,所以函数f(x)单调递增;当a0,b0.(i)当a0时,x,解得xlog;(ii)当a0,b0时,x,解得x0时,f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 继承连锁饭店合同范本
- 监理合同价格补充协议
- 物业服务租售合同范本
- 罚款标准异议合同范本
- 物业资产保全合同范本
- 购房合同装修补充协议
- 监控产品代理协议合同
- 2025年兵团遴选面试真题及答案
- 购销合作协议合同范本
- 连续三年销售合同范本
- 2025年压力容器设计人员考核试题与答案
- 2025年龙江森林工业集团有限公司所属事业单位招聘考试试题(含答案)
- 营养健康美味炒饭
- 国企预算管理办法制度
- 【正版授权】 ISO/IEC 17050-1:2004 AR Conformity assessment - Supplier's declaration of conformity - Part 1: General requirements
- 养林麝可行性报告
- 科研人员入职培训心得体会
- 儿童康复引导式教育讲课件
- 设备易损配件管理制度
- 精神疾病早期识别要点
- 加油站劳保用品管理制度
评论
0/150
提交评论