




免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题3.1 导数的概念及运算真题回放1. 【2017浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是【答案】d【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选d【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间2. 【2017天津,文10】已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为 .【答案】 【解析】【考点】导数的几何意义【名师点睛】本题考查了导数的几何意义,属于基础题型,函数在点处的导数的几何意义是曲线在点处的切线的斜率相应地,切线方程为注意:求曲线切线时,要分清在点处的切线与过点的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.3. 【2017北京,文20】已知函数()求曲线在点处的切线方程;()求函数在区间上的最大值和最小值【答案】();()最大值1;最小值.【解析】()设,则.当时,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为不能判断函数的单调性,所以需要再求一次导数,设 ,再求,一般这时就可求得函数的零点,或是恒成立,这样就能知道函数的单调性,根据单调性求最值,从而判断的单调性,求得最值.考点分析考点了解a掌握b灵活运用c导数的概念a导数的几何意义b导数的运算b 高考对导数的考查,主要是考查导数的概念、计算、几何意义以及导数在研究函数中的应用;从考查形式上看,基本上是以一道小题和一道大题形式出现,其中导数的几何意义考查,试题难度较低,有选择题、填空题,有时作为解答题中的关键一步,常常与直线的斜率、倾斜角、直线的方程、三角函数等相结合.融会贯通题型一导数的计算典例1. 求下列函数的导数(1)yx2sin x;(2)yln x;(3)y.【解题技巧与方法总结】求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量【变式训练】(1)f(x)x(2 016ln x),若f(x0)2 017,则x0等于()ae2 b1 cln 2 de(2)若函数f(x)ax4bx2c满足f(1)2,则f(1)等于()a1 b2 c2 d0【答案】(1)b(2)b【知识链接】1导数与导函数的概念(1)一般地,函数yf(x)在xx0处的瞬时变化率是 ,我们称它为函数yf(x)在xx0处的导数,记作,即f(x0) .(2)如果函数yf(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数yf(x)在开区间内的导函数记作f(x)或y.2基本初等函数的导数公式基本初等函数导函数f(x)c(c为常数)f(x)0f(x)x(q*)f(x)x1f(x)sin xf(x)cos xf(x)cos xf(x)sin xf(x)exf(x)exf(x)ax(a0,a1)f(x)axln af(x)ln xf(x)f(x)logax(a0,a1)f(x)3.导数的运算法则若f(x),g(x)存在,则有(1)f(x)g(x);(2)f(x)g(x)f(x)g(x);(3)(g(x)0)题型二导数的几何意义典例2(1)已知f(x)为偶函数,当x0时,f(x)ln(x)3x,则曲线yf(x)在点(1,3)处的切线方程是 (2)已知函数f(x)xln x,若直线l过点(0,1),并且与曲线yf(x)相切,则直线l的方程为()axy10 bxy10cxy10 dxy10【答案】(1)2xy10(2)b典例3(1) 函数yex的切线方程为ymx,则m .(2) 已知f(x)ln x,g(x)x2mx(m0),直线l与函数f(x),g(x)的图象都相切,与f(x)图象的切点为(1,f(1),则m等于()a1 b3 c4 d2【答案】(1)e(2)d【解析】(1)设切点坐标为p(x0,y0),由yex,得从而切线方程为又切线过定点(0,0),从而解得x01,则me.(2)f(x),直线l的斜率kf(1)1.又f(1)0,切线l的方程为yx1.g(x)xm,设直线l与g(x)的图象的切点为(x0,y0),则有x0m1,y0x01,y0xmx0,m1,解得,f(2)=8+4a+(1a)=3a7,f(2)的取值范围是(,+).12【四川省师范大学附属中学2017届高三下学期5月模拟考试数学(理)试卷】已知函数,曲线在点处的切线方程为(其中是自然对数的底数).(i)求实数的值;(ii)求证: .【答案】(i); .(ii)见解析.(ii)要证明,即证明,而函数在上单减,在上单增,同时函数在上单增,在上单减(此处证明略),因此只须证明在上恒成立首先证明,因 ;然后证明,因 在上单减,且在上单增,在上单减, 综上可知, 成立13【湖南省长沙市雅礼中学2017届高考模拟试卷(二)数学(文)】已知函数(1)当为何值时, 轴为曲线的切线;(2)用表示中的最小值,设函数,讨论零点的个数【答案】(1)当时, 轴是曲线的切线(2)当或时, 有一个零点;当或时, 有两个零点;当时, 有三个零点(2)当时, ,从而,在无零点,当时,若,则, ,故是的零点; 若,则, ,故不是的零点,当时, ,所以只需考虑在的零点个数,()若或,则在无零点,故在单调,而,所以当时, 在有一个零点; 当时, 在无零点;14【河北省石家庄市2017届高三毕业班第二次模拟考试数学(文)试题】已知函数,其中()若,求函数的图象在点处的切线方程;()若, 恒成立,求的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铝灰渣高效分解与合成方案
- 排水管道方案的长效监管与执行方案
- 铝灰渣烧结与高温处理技术
- 2025年企业人力资源管理师(四级)实操能力试卷含答案
- 住院医师规范化培训理论考核试题与答案
- 码头项目施工方案
- 风电项目环境影响评估
- 2025版暖通设备安装与节能改造合同样本
- 二零二五年度第二章国际贸易标的国际货物运输保险理赔合同
- 二零二五年度拆除工程劳务合同范本(含施工技术指导)
- 四链融合:新质生产力的深度路径
- 2025-2030中国金属橡胶隔振元件军工领域特殊需求与民用市场开发策略
- 2025年中山市三角镇人民政府所属事业单位招聘事业单位人员模拟试卷及1套完整答案详解
- 云南省楚雄彝族自治州佳汇公证处招聘公证员笔试模拟试题参考答案详解
- 婴幼儿常备药品家庭管理指南
- 2025至2030年中国电力巡检无人机行业市场竞争格局及投资前景展望报告
- 江苏中国资源循环集团新能源科技有限公司招聘笔试题库2025
- 2025年赛力斯入职测试题及答案
- 2025年旅游服务合同范本
- 2025年电动三轮车销售与售后服务合同
- 老年病科常见疾病护理常规
评论
0/150
提交评论