




免费预览已结束,剩余10页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图像判断极值典例 设函数f(x)在r上可导,其导函数为f(x),且函数y(1x)f(x)的图像如图所示,则下列结论中一定成立的是()a函数f(x)有极大值f(2)和极小值f(1)b函数f(x)有极大值f(2)和极小值f(1)c函数f(x)有极大值f(2)和极小值f(2)d函数f(x)有极大值f(2)和极小值f(2)答案d解析由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求函数的极值典例 (2017泉州质检)已知函数f(x)x1(ar,e为自然对数的底数)(1)若曲线yf(x)在点(1,f(1)处的切线平行于x轴,求a的值;(2)求函数f(x)的极值解(1)由f(x)x1,得f(x)1.又曲线yf(x)在点(1,f(1)处的切线平行于x轴,得f(1)0,即10,解得ae.(2)f(x)1,当a0时,f(x)0,f(x)在(,)上是增加的,所以函数f(x)无极值当a0时,令f(x)0,得exa,即xln a,当x(,ln a)时,f(x)0,所以f(x)在(,ln a)上是减少的,在(ln a,)上是增加的,故f(x)在xln a处取得极小值且极小值为f(ln a)ln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,f(x)在xln a处取得极小值ln a,无极大值命题点3根据极值求参数典例 (1)(2017沧州模拟)若函数f(x)x32cx2x有极值点,则实数c的取值范围为_答案解析f(x)3x24cx1,由f(x)0有两个不同的根,可得(4c)2120,c或c.(2)若函数f(x)x2x1在区间上有极值点,则实数a的取值范围是()a. b.c. d.答案c解析函数f(x)在区间上有极值点等价于f(x)0有2个不相等的实根且在内有根,由f(x)0有2个不相等的实根,得a2.由f(x)0在内有根,得ax在内有解,又x,所以2a,综上,a的取值范围是.思维升华 函数极值的两类热点问题(1)求函数f(x)极值的一般解题步骤确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号(2)根据函数极值情况求参数的两个要领列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解验证:求解后验证根的合理性跟踪训练 (1)函数f(x)(x21)22的极值点是()ax1 bx1cx1或1或0 dx0答案c解析f(x)x42x23,由f(x)4x34x4x(x1)(x1)0,得x0或x1或x1.又当x1时,f(x)0,当1x0,当0x1时,f(x)1时,f(x)0,x0,1,1都是f(x)的极值点(2)函数y2x的极大值是_答案3解析y2,令y0,得x1.当x0时,y0;当1x0时,y0.当x1时,y取极大值3.题型二用导数求函数的最值典例 (2017洛阳模拟)已知函数f(x)kln x,k,求函数f(x)在上的最大值和最小值解f(x).若k0,则f(x)在上恒有f(x)0,所以f(x)在上是减少的若k0,则f(x).()若k0,则在上恒有0,由ke,则x0在上恒成立,所以0,所以f(x)在上是减少的综上,当k0,得x1;令f(x)0,得1a,则实数a的取值范围是_答案解析由题意知,f(x)3x2x2,令f(x)0,得3x2x20,解得x1或x,又f(1),f,f(1),f(2)7,故f(x)min,a0)的导函数yf(x)的两个零点为3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值解(1)f(x).令g(x)ax2(2ab)xbc,因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点且f(x)与g(x)符号相同又因为a0,所以当3x0,即f(x)0,当x0时,g(x)0,即f(x)5f(0),所以函数f(x)在区间5,)上的最大值是5e5.思维升华 (1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图像,然后借助图像观察得到函数的最值跟踪训练 若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是()a5,0) b(5,0)c3,0) d(3,0)答案c解析由题意,得f(x)x22xx(x2),故f(x)在(,2),(0,)上是增加的,在(2,0)上是减少的,作出其图像如图所示,令x3x2,得x0或x3,则结合图像可知,解得a3,0)利用导数求函数的最值典例 (12分)已知函数f(x)ln xax(ar)(1)求函数f(x)的单调区间;(2)当a0时,求函数f(x)在1,2上的最小值思维点拨 (1)已知函数解析式求单调区间,实质上是求f(x)0,f(x)0),当a0时,f(x)a0,即函数f(x)的递增区间为(0,)2分当a0时,令f(x)a0,可得x,当0x0;当x时,f(x)0时,函数f(x)的递增区间为,递减区间为.5分(2)当1,即a1时,函数f(x)在区间1,2上是减少的,所以f(x)的最小值是f(2)ln 22a.6分当2,即0a时,函数f(x)在区间1,2上是增加的,所以f(x)的最小值是f(1)a.7分当12,即a1时,函数f(x)在上是增加的,在上是减少的又f(2)f(1)ln 2a,所以当aln 2时,最小值是f(1)a;当ln 2a1时,最小值为f(2)ln 22a.11分综上可知,当0a0,即a23a180.a6或a0.令f(x)0,得x1.令f(x)0,得0x1.f(x)在x1处取得极小值也是最小值,且f(1)ln 1.5已知函数f(x)x3ax2bxa2在x1处有极值10,则f(2)等于()a11或18 b11c18 d17或18答案c解析函数f(x)x3ax2bxa2在x1处有极值10,f(1)10,且f(1)0,又f(x)3x22axb,解得或而当时,函数在x1处无极值,故舍去f(x)x34x211x16,f(2)18.6(2017河北三市二联)若函数f(x)x3x22bx在区间3,1上不是单调函数,则函数f(x)在r上的极小值为()a2b b.bc0 db2b3答案a解析f(x)x2(2b)x2b(xb)(x2),函数f(x)在区间3,1上不是单调函数,3b0,得x2,由f(x)0,得bx0)的极大值是正数,极小值是负数,则a的取值范围是_答案解析f(x)3x23a23(xa)(xa),由f(x)0得xa,当axa时,f(x)a或x0,函数是增加的,f(x)的极大值为f(a),极小值为f(a)f(a)a33a3a0且f(a)a33a3a.a的取值范围是.9函数f(x)xex,x0,4的最大值是_答案解析f(x)exxexex(1x),令f(x)0,得x1.又f(0)0,f(4),f(1)e1,f(1)为最大值10已知函数f(x)x3ax24在x2处取得极值,若m1,1,则f(m)的最小值为_答案4解析f(x)3x22ax,由f(x)在x2处取得极值知f(2)0,即342a20,故a3.由此可得f(x)x33x24.f(x)3x26x,由此可得f(x)在(1,0)上是减少的,在(0,1)上是增加的,当m1,1时,f(m)minf(0)4.11(2017北京)已知函数f(x)excos xx.(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)求函数f(x)在区间上的最大值和最小值解(1)因为f(x)excos xx,所以f(x)ex(cos xsin x)1,所以f(0)0,又因为f(0)1,所以曲线yf(x)在点(0,f(0)处的切线方程为y10.(2)设h(x)ex(cos xsin x)1,则h(x)ex(cos xsin xsin xcos x)2exsin x.当x时,h(x)0,所以h(x)在区间上是减少的所以对任意x有h(x)h(0)0,即f(x)0.所以函数f(x)在区间上是减少的因此f(x)在区间上的最大值为f(0)1,最小值为f.12(2018武汉质检)已知函数f(x)(1)求f(x)在区间(,1)上的极小值和极大值点;(2)求f(x)在1,e(e为自然对数的底数)上的最大值解(1)当x0时,f(x)在1,e上是增加的,则f(x)在1,e上的最大值为f(e)a.故当a2时,f(x)在1,e上的最大值为a;当a2时,f(x)在1,e上的最大值为2.13已知函数f(x)x3x2xm在0,1上的最小值为,则实数m的值为_答案2解析由f(x)x3x2xm,可得f(x)x22x1,令x22x10,可得x1.当x(1,1)时,f(x)0),则f(t)2t,令f(t)0,得t,当0t时,f(t)时,f(t)0,当t时,f(t)取得最小值15若函数f(x)mln x(m1)x存在最大值m,且m0,则实数m的取值范围是_答案解析f(x)(m1)(x0),当m0或m1时,f(x)在(0,)上单调,此时函数f(x)无最大值当0m1时,令f(x)0,则x,当0m1时,f(x)在上是增加的,在上是减少的,当0m0,mlnm0,解得m,m的取值范围是.16已知函数f(x)x2mxln x.(1)若m3,讨论函数f(x)的单调性,并写出单调区间;(2)若f(x)有两个极值点x1,x2(x10,且f(x)x3,令f(x)0,得0x,令f(x)0,得x.因此函数f(x)在上是减少的,在和上是增加的(2)由题意知,f(x)xm,则易知x1,x2为x2mx10的两个根,且x1x2m,x1x21,所以f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法治思想面试题及答案
- 护士交班考试题及答案
- 乡镇副职面试题及答案
- 预防感冒面试题及答案
- 恐惧死亡测试题及答案
- 家电公司法律事务管理办法
- 家电公司声誉风险管理规定
- 2.4圆周角(第1课时圆周角定理)(教学课件)数学苏科版九年级上册
- 保安执勤装备使用课件
- 保安岗位知识培训课件
- 新《职业病危害工程防护》考试复习题库(浓缩500题)
- 数字时代跨文化适应机制-洞察阐释
- 老年人体头部有限元建模及碰撞损伤机制的深度剖析与研究
- 夫妻存款赠与协议书
- 2025中式烹调师(初级)理论知识测评试卷(烹饪健康饮食)
- 矿山合作勘探协议书
- 配货服务代理合同协议
- 医疗行业中的跨学科人才培养
- 2025-2030中国机场酒店行业市场前瞻与未来投资战略分析研究报告
- 海康威视综合安防工程师认证试题答案HCA
- 物业保安劳务协议合同书
评论
0/150
提交评论