2018-2019学年师大附中高一上学期期中数学试题(解析版)_第1页
2018-2019学年师大附中高一上学期期中数学试题(解析版)_第2页
2018-2019学年师大附中高一上学期期中数学试题(解析版)_第3页
2018-2019学年师大附中高一上学期期中数学试题(解析版)_第4页
2018-2019学年师大附中高一上学期期中数学试题(解析版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018-2019学年师大附中高一上学期期中数学试题一、单选题1已知集合,则为( ).ABCD【答案】C【解析】根据条件解出集合,再根据交集的概念即可求出.【详解】解:集合,又集合所以.故选:C.【点睛】本题考查一元二次方程的解法,考查集合交集的概念和运算,属于基础题.2下列函数中,在其定义域内既是奇函数又是减函数的是( ).ABCD【答案】D【解析】根据初等函数的性质逐个分析选项即可得出答案.【详解】解:A. 在上单调递减,在上单调递减,但是在定义域内不是减函数.B. 在定义域内为减函数,但不是奇函数.C. 是偶函数,也不单调递减.D. 是奇函数,且在定义域内单调递减,复合题意.故选:D.【点睛】本题考查函数的奇偶性和单调性,解题的关键是熟练掌握初等函数的性质,属于基础题.3函数与的图象只可能是下图中的( ).ABCD【答案】B【解析】观察选项AC,均单调递增,则,则直线所过定点在1的上方,选项BD,单调递减,则,则直线所过的定点在1的下方且在y轴正半轴上,由此可以判断选项.【详解】解:选项AC中,单调递增,则,过定点在(0,1)点上方,所以A、C不正确.选项BD中,单调递减,则,过定点在(0,1)点下方,所以B正确,D不正确.故选:B.【点睛】本题考查指数函数和一次函数的图像,考查指数函数的性质,属于基础题.4已知函数的定义域为,若存在闭区间,使得满足:在内是单调函数;在上的值域为,则称区间为的“倍增区间”,下列函数存在“倍增区间”的是( ).ABCD【答案】B【解析】根据题意,函数存在“倍增区间”,若函数单调递增,则,若函数单调递减,则,根据条件逐个分析选项,求解即可.【详解】解:对于A.:在上单调递增,则根据题意有有两个不同的解,不成立,所以A不正确.对于B:在上单调递增,根据题意有在上有两个不同的解,解得:,符合题意,所以B正确.对于C: ,若,函数在单增,则有有两个解,即在上有两个解,不符合,若 ,仍然无解,所以C不正确.对于D:在上单调递增,则有两个解,不成立,所以D不正确.故选:B.【点睛】本题考查函数新定义题型,考查函数的单调性以及构造函数求解问题,属于中档题.二、填空题5若幂函数为常数)的图象过点,则的值为_.【答案】【解析】根据函数所过定点,可以求出函数的解析式,只需代入即可求得的值.【详解】解:因为幂函数为常数)的图象过点,所以,解得:,所以,则.故答案为:.【点睛】本题考查根据图像所过点求幂函数的解析式问题,考查具体函数求值问题,属于基础题.6设,,则按从小到大排列的顺序是_.【答案】【解析】因为,所以根据函数值的范围即可比较出大小顺序.【详解】解:,所以按从小到大排列的顺序是.故答案为:.【点睛】本题考查指对幂大小的比较,中间值法是常用的方法,属于基础图.7已知集合若则实数的取值范围是_.【答案】【解析】由得,则可根据子集的定义列出不等式求解即可.【详解】解:则,所以,解得:.故答案为:.【点睛】本题考查子集的定义和运算,考查不等式的解法,属于基础题.8函数的定义域是_【答案】【解析】由,得,所以,所以原函数定义域为,故答案为.9已知函数,则的值是_.【答案】1【解析】根据条件,先代入,求得的值,再根据函数值代入相应的解析式计算,则可求出结果.【详解】解:函数,所以,则.故答案为:1【点睛】本题考查分段函数求值,比较范围,逐步代入解析式是解题的关键,属于基础题.10若,则_【答案】1【解析】由求得,利用对数的运算法则化简即可.【详解】因为,所以,则,故答案为1.【点睛】本题主要考查对数的运算与性质,意在考查灵活应用所学知识解答问题的能力,属于基础题.11函数的最小值是_.【答案】2【解析】令,对函数进行换元,则原式等价于求 的最小值.对二次函数配方即可求函数的最小值.【详解】解:令,则原式等价于求 的最小值.,函数图像开口向上,对称轴为,所以当时,y有最小值为2.故答案为:2.【点睛】本题考查求复合型二次函数的最小值,解题的关键是换元后注意范围的变化,属于基础题.12已知函数是上的偶函数,且在区间上是单调增函数,若,则满足的实数的取值范围是_.【答案】【解析】函数是上的偶函数,且在区间上是单调增函数,可以得出在区间上是单调减函数,又,所以,结合单调性即可求出的解,将整体代入,即可求出x的范围.【详解】解:函数是上的偶函数,且在区间上是单调增函数,所以在区间上是单调减函数,又,所以.的解为:,则的解为:,即.故答案为:.【点睛】本题考查函数的奇偶性,考查函数奇偶性单调性的综合应用,考查整体代换和转化的思想,解题的关键是时刻注意函数的定义域,属于基础题.13若函数在区间上有,则的单调减区间是_.【答案】【解析】由题意当时,又,得.则根据复合函数的单调性即可求出的单调减区间.【详解】解:因为,所以,又,所以.根据复合函数单调性法则:的单调减区间为的单调增区间,又,所以的单调减区间为.故答案为:.【点睛】本题考查对数函数的取值范围,考查求复合函数的单调区间,解题的关键是注意函数的定义域,属于基础题.14设函数,则使得成立的实数的取值范围是_.【答案】或.【解析】观察函数,可知函数为偶函数,且在区间上单调递增,则根据函数的奇偶性和单调性,若成立,则,求解即可得出的取值范围.【详解】解:函数为偶函数,且在区间上单调递增,所以若成立,则,变形为:解得:或.故答案为:或.【点睛】本题考查函数奇偶性和单调性的综合应用,涉及不等式的解法,属于基础题.三、解答题15计算(1)(2)【答案】(1);(2).【解析】(1)根据指数的运算性质化简即可. (2)根据对数的运算性质化简即可求出答案.【详解】解:(1)=.(2)=.【点睛】本题考查指数函数,对数函数的运算性质,解题的关键是牢记公式并且灵活运用,属于基础题.16已知全集,集合(1)求;(2)设实数,集合,若求a的取值范围.【答案】(1);(2)或.【解析】(1)求出集合B,根据并集的定义和运算求出即可.(2),又,所以,则根据交接为空集列出不等关系求解即可.【详解】解:(1)=,又集合,所以.(2)集合,又,所以. ,则或,解得:或.【点睛】本题考查并集的概念和运算,考查根据交集为空求解,涉及到指数函数的运算,属于基础题.17已知函数(1)求函数的定义域(2)求不等式成立时,实数的取值范围.【答案】(1);(2).【解析】(1) 函数的定义域为和 定义域的交集,求出函数和的定义域,再求交集即可求出结果. (2) 等价于,解不等式,再结合定义域即可求出实数的取值范围.【详解】解:(1)的定义域为,的定义域为.所以函数的定义域为.(2)不等式,等价于,即:,解得:. 又定义域为,所以实数的取值范围为.【点睛】本题考查求函数定义域的方法,考查求解对数不等式,属于基础题.18已知定义在上的函数的图像关于原点对称(1)求实数的值;(2)求的值域.【答案】(1);(2).【解析】(1)定义在上的函数的图像关于原点对称,所以为奇函数,代入即可求出m的值. (2)由(1)可求,结合指数函数的性质即可求值域.【详解】解:(1)定义在上的函数的图像关于原点对称,所以为奇函数,则有,所以.证明,当时,关于原点对称,所以成立.(2),由于,所以,所以.所以的值域为.【点睛】本题考查了函数奇偶性的应用,同时考查了指数函数值域的求解,属于中档题.19某城市的街道是相互垂直或平行的,如果按照街道垂直和平行的方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.如图,学校在点处,商店在点,小明家在点处,某日放学后,小明沿道路从学校匀速步行到商店,已知小明的速度是每分钟1个单位长度,设步行分钟时,小明与家的距离为个单位长度.(1)求关于的解析式;(2)做出中函数的图象,并求小明离家的距离不大于7个单位长度的总时长.【答案】(1);(2).【解析】(1)根据题意,从A到B直线行走,起始点的横坐标为1,所以步行分钟后,横坐标为,不变,则根据距离的新定义可求出关于的解析式.(2)根据解析式做出图像,由图像解方程即可求出结果.【详解】解:(1)步行分钟时,小明仍在AB之间,所以小明的坐标为,则小明与家的距离为.所以关于的解析式为: .(2)图像如图:.当故当小明离家的距离不大于7个单位长度时, .【点睛】本题考查函数与解析式新定义题型,考查根据解析式做出函数图像,解题的关键是对新定义一定要理解深刻,属于中档题.20设M为满足下列条件的函数构成的集合,存在实数,使得.(1)判断是否为M中的元素,并说明理由;(2)设,求实数a的取值范围;(3)已知的图象与的图象交于点,,证明:是中的元素,并求出此时的值(用表示).【答案】(1)是;(2)3,3+;(3)x0,证明见解析【解析】根据集合M的定义,可根据函数的解析式f(x0+1)f(x0)+f(1)构造方程,若方程有根,说明函数符合集合M的定义,若方程无根,说明函数不符合集合M的定义;(2)设h(x)M,则存在实数x,使h(x+1)h(x)+h(1)成立,解出a的取值范围即可;(3)利用f(x0+1)f(x0)+f(1)和y2ex(x)的图象与y为图象有交点,即对应方程有根,与求出的值进行比较即可解出x0【详解】解:(1)设g(x)为M中的元素,则存在实数x0,使得f(x0+1)f(x0)+f(1);即(x+1)2x2+1,x0,故g(x)x2是M中的元素(2)设h(x)M,则存在实数x,使h(x+1)h(x)+h(1)成立;即lglg+lg;(a2)x2+2ax+2a20,当a2时,x;当a2时,则4a24(a2)(2a2)0;解得a26a+40,3a3+且a2;实数a的取值范围为:3,3+(3)设m(x)ln(3x1)x2M,则m(x0+1)m(x0)+m(1);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论