



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题检测(二十一)解答题“函数、导数与不等式”专练1已知函数f(x)(1)求f(x)在区间(,1)上的极小值和极大值点;(2)求f(x)在1,e(e为自然对数的底数)上的最大值解:(1)当x0时,f(x)在1,e上单调递增,则f(x)在1,e上的最大值为f(e)a.故当a2时,f(x)在1,e上的最大值为a;当a0),h(x)2,由h(x)0,得0x或x1,故h(x)的单调递减区间是和(1,)(2)问题等价于aln x有唯一的实根,显然a0,则关于x的方程xln x有唯一的实根,构造函数(x)xln x,则(x)1ln x,由(x)1ln x0,得xe1,当0xe1时,(x)0,(x)单调递减,当xe1时,(x)0,(x)单调递增,(x)的极小值为(e1)e1.作出函数(x)的大致图象如图所示,则要使方程xln x有唯一的实根,只需直线y与曲线y(x)有唯一的交点,则e1或0,解得ae或a0,故实数a的取值范围是e(0,)3(2017沈阳质检)已知函数f(x)ex1xax2.(1)当a0时,证明:f(x)0;(2)当x0时,若不等式f(x)0恒成立,求实数a的取值范围;(3)若x0,证明:(ex1)ln(x1)x2.解:(1)证明:当a0时,f(x)ex1x,f(x)ex1.当x(,0)时,f(x)0.故f(x)在(,0)上单调递减,在(0,)上单调递增,f(x)minf(0)0,f(x)0.(2)f(x)ex2ax1,令h(x)ex2ax1,则h(x)ex2a.当2a1,即a时,在0,)上,h(x)0,h(x)单调递增,h(x)h(0),即f(x)f(0)0,f(x)在0,)上为增函数,f(x)f(0)0,当a时满足条件当2a1时,令h(x)0,解得xln 2a,在0,ln 2a)上,h(x)0,h(x)单调递减,当x(0,ln 2a)时,有h(x)h(0)0,即f(x)f(0)0,f(x)在区间(0,ln 2a)上为减函数,f(x)0时,ex1x,欲证不等式(ex1)ln(x1)x2,只需证ln(x1).设f(x)ln(x1),则f(x).当x0时,f(x)0恒成立,且f(0)0,f(x)0恒成立原不等式得证4(2017天津高考)设a,br,|a|1.已知函数f(x)x36x23a(a4)xb,g(x)exf(x)(1)求f(x)的单调区间;(2)已知函数yg(x)和yex的图象在公共点(x0,y0)处有相同的切线,求证:f(x)在xx0处的导数等于0;若关于x的不等式g(x)ex在区间x01,x01上恒成立,求b的取值范围解:(1)由f(x)x36x23a(a4)xb,可得f(x)3x212x3a(a4)3(xa)x(4a)令f(x)0,解得xa,或x4a.由|a|1,得a4a.当x变化时,f(x),f(x)的变化情况如下表:x(,a)(a,4a)(4a,)f(x)f(x)所以f(x)的单调递增区间为(,a),(4a,),单调递减区间为(a,4a)(2)证明:因为g(x)exf(x)f(x),由题意知所以解得所以f(x)在xx0处的导数等于0.因为g(x)ex,xx01,x01,由ex0,可得f(x)1.又因为f(x0)1,f(x0)0,所以x0为f(x)的极大值点,结合(1)知x0a.另一方面,由于|a|1,故a14a,由(1)知f(x)在(a1,a)内单调递增,在(a,a1)内单调递减,故当x0a时,f(x)f(a)1在a1,a1上恒成立,从而g(x)ex在x01,x01上恒成立由f(a)a36a23a(a4)ab1,得b2a36a21,1a1.令t(x)2x36x21,x1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纪检监察组财务知识培训课件
- 谐振腔原理应用课件
- 2025定制环保建筑材料供应合同
- 2025版水利工程施工劳务分包合同范本
- 2025版云计算解决方案投资买卖合同书
- 2025年草料加工与销售企业合作合同
- 2025年二手车居间业务佣金分配合同
- 2025别墅区物业设施设备更新改造合同
- 2025年度柴油质量检测与认证居间服务协议
- 2025版生猪养殖基地与屠宰企业产销合作协议书
- 4.《花之歌》教学设计-2024-2025学年统编版语文六年级上册
- 诉讼业务培训课件
- 12345热线培训课件
- 危险废弃物管理培训试题(附答案)
- 2025国投生物制造创新研究院有限公司招聘(31人)考试备考试题及答案解析
- 多彩的超轻泥教学课件
- 新学期,新征程+课件-2025-2026学年高二上学期开学第一课主题班会
- 赛事租赁用品租赁模式分析报告
- 学校防坠楼安全知识培训课件
- 护士长领导力提升与团队管理技巧
- 产前筛查答案及试题(附答案)
评论
0/150
提交评论