




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求数列的通项公式 学习目标 在了解数列概念的基础上 掌握几种常见递推数列通项公式的求解方法理解求通项公式的原理体会各种方法之间的异同 感受事物与事物之间的相互联系 例1 写出下面数列的一个通项公式 使它的前几项分别是下列各数 已知数列的前几项 通常先将各项分解成几部分 如符号 分子 分母 底数 指数等 然后观察各部分与项数的关系 写出通项 一 观察法 1 写出下列数列的一个通项公式 1 9 99 999 9999 解 an 10n 1 2 1 11 111 1111 分析 注意观察各项与它的序号的关系有10 1 102 1 103 1 104 1 解 an 10n 1 这是特殊到一般的思想 也是数学上重要的思想方法 但欠严谨 分析 注意与熟悉数列9 99 999 9999 联系 练习 注意 1 这种做法适用于所有数列 2 用这种方法求通项需检验a1是否满足an 二 公式法 利用an与Sn的关系或利用等差 等比数列的通项公式 练习 1 an 的前项和Sn 2n2 1 求通项an 解 当n 2时 an Sn Sn 1 2n2 1 2 n 1 2 1 4n 2 当n 1时 a1 1 不满足上式 3 已知 an 中 a1 2a2 3a3 nan 3n 1 求通项an 解 a1 2a2 3a3 nan 3n 1 n 1 a1 2a2 3a3 n 1 an 1 3n n 2 nan 3n 1 3n 2 3n 而n 1时 a1 9 n 2 两式相减得 例3 已知 an 中 an 1 an n n N a1 1 求通项an 解 由an 1 an n n N 得 an an an 1 an 1 an 2 a2 a1 a1 n 1 n 2 2 1 1 三 累加法 递推公式形如an 1 an f n 型的数列 n个等式相加得 an 1 an n n N 1 注意讨论首项 2 适用于an 1 an f n 型递推公式 求法 累加法 练习 四 累乘法 形如an 1 f n an型 例4 已知 an 是首项为1的正项数列 且 n 1 an 12 an 1an nan2 0 求 an 的通项公式 解 n 1 an 12 an 1an nan2 0 an 1 an n 1 an 1 nan 0 an 1 an 0 n 1 an n 1 an 1 nan 练习1 类型四 累乘法形如的递推式 四 累乘法适用于an 1 anf n 型的递推公式 练习2 五 迭代法 例5 已知 an 中 an 3n 1 an 1 n 2 a1 1 求通项an 解 an 3n 1 an 1 n 2 an 3n 1 an 1 3n 1 3n 2 an 2 3n 1 3n 2 3n 3 an 3 3n 1 3n 2 3n 3 3 a1 3n 1 3n 2 3n 3 3 1 递推公式形如an 1 an f n 型的数列 六待定系数法 构造法 例6 解 由题意可知 an 1 1 2 an 1 所以数列 an 1 是以a1 1 2为首项 2为公比的等比数列 所以an 1 2n 即an 2n 1 反思 待定系数法如何确定x 待定系数法 令an 1 x p an x 即 an 1 pan px x 根据已知x 所以数列 是等比数列 类型七 相除法形如的递推式 例8 变式迁移 已知数列 an 中 a1 5且an 2an 1 2n 1 n 2且n N 1 求证数列为等差数列 2 求数列 an 的通项公式 解 1 方法1 构造法 因为a1 5且an 2an 1 2n 1 所以当n 2时 an 1 2 an 1 1 2n 所以 所以 所以是以为首项 以1为公差的等差数列 方法2 代入法 因为a1 5 n 2时 所以 所以是以为首项 以1为公差的等差数列 2 由 1 知 所以an n 1 2n 1 练习 已知数列 an 中a1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025年标准)合伙开酒馆协议书
- (2025年标准)弱电消防协议书
- 2025年新装修垃圾搬运协议书
- 抽佣合同(标准版)
- 2025年新股东之间借款协议书
- 2025年村超市租赁协议书
- (2025年标准)股权无偿赠送协议书
- 窗帘责任协议
- 2025北京市纪委市监委所属事业单位第二次招聘12人备考试题及答案解析
- 2025河北沧州市博施康养集团有限公司教育项目部员工招聘3人考试备考题库及答案解析
- 综采工作面液压支架安装回撤工理论考核试题及答案
- 初中高中英语所有单词集合带音标
- 露天矿山危险源辨识(汇总)
- 放射科质控汇报
- GB/T 31091-2014煤场管理通用技术要求
- GB/T 24218.1-2009纺织品非织造布试验方法第1部分:单位面积质量的测定
- 万东GFS型高频高压发生装置维修手册
- 公寓de全人物攻略本为个人爱好而制成如需转载注明信息
- 企业经营沙盘模拟实训指导书
- 汉密尔顿抑郁量表17项
- 《现代物流管理》第一章-导论(课用)
评论
0/150
提交评论