




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1两个基本计数原理学 习 目 标核 心 素 养1.掌握分类计数原理与分步计数原理(重点)2会用两个基本计数原理解决一些简单的应用问题(难点)通过对两个基本计数原理的学习,发展数学抽象、逻辑推理素养.1分类计数原理如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,在第n类方式中有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法2分步计数原理如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法思考:分类计数原理与分步计数原理有何区别?提示两个计数原理最大的区别是:完成这件事是分类还是分步分类计数原理中每一类方法都能独立地完成这件事,具有“独立性”,而分步计数原理则是完成一件事分几步,而每一步中的每种方法不能独立完成这件事,每一步中的方法“分步互依”1某校高三有三个班,分别有学生50人、50人、52人,从中选一人担任学生会主席,不同选法的种数为()A100B102C152D50C这名学生会主席可能是一班学生,可能是二班学生,也可能是三班学生依分类加法计数原理,共有505052152种不同选法2现有4件不同款式的上衣和3件不同颜色的长裤,如果一件上衣和一条长裤配成一套,则不同的搭配法种数为()A7B12C64D81B完成一种搭配有两个步骤,第一步,选上衣有4种不同的选法;第二步,选长裤有3种不同的选法所以根据分步乘法计数原理共有4312种不同的搭配法3某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_种(用数字作答)96分两类,第一棒是丙有12432148(种);第一棒是甲、乙中一人有21432148(种)根据分类计数原理得,共有方案484896(种)分类计数原理【例1】(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?思路探究(1)按所选组长来自不同班为分类标准(2)按个位(或十位)取09不同的数字进行分类解(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法共有不同选法N456722种(2)法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个由分类计数原理知,符合题意的两位数共有8765432136(个)法二:按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类计数原理知,满足条件的两位数共有1234567836(个)1应用分类计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏(3)方法独立:确定的每一类方法必须能独立地完成这件事2利用分类计数原理解题的一般思路1(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有()A1种B2种C3种D4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个若从三个袋子中任取1个小球,有_种不同的取法(1)C(2)15(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有213种故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有65415种分步计数原理【例2】一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?思路探究根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步计数原理解按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m110;第二步,有10种拨号方式,所以m210;第三步,有10种拨号方式,所以m310;第四步,有10种拨号方式,所以m410.根据分步计数原理,共可以组成N1010101010 000个四位数的号码1应用分步计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可2利用分步计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果2张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种问:张涛共有多少种不同的理财方式?解由题意知,张涛要完成理财目标应分步完成第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式由分步计数原理,得236种两个计数原理的辨析探究问题1某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?提示“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成而只选出“一荤一素”不能算“完成这件事”2在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?提示要配成一荤一素一汤的套餐,需分步完成只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事3在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类计数原理和分步计数原理求解吗?你能说明分类计数原理与分步计数原理的主要区别吗?提示5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法故由加法计数原理,配成“一素一汤”的套餐共有3333315(种)不同的套餐利用分步计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法由分步计数原理,配成“一素一汤”的套餐共有5315(种)不同套餐两个计数原理的主要区别在于分类计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事【例3】有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?思路探究从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成即解答本题可“先分类,后分步”解第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有224种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法根据分类计数原理,共有42118种选派方法1能用分步计数原理解决的问题具有如下特点(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数2利用分步计数原理应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成3一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?解(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法根据分类计数原理,共有101222种取法(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法根据分步计数原理,共有1012120种取法1本节课的重点是分类计数原理和分步计数原理,难点是两个计数原理的灵活应用2分类计数原理与分步计数原理的比较分类计数原理分步计数原理区别一完成一件事,共有n类办法,关键词是“分类”完成一件事,共分n个步骤,关键词是“分步”区别二每一类办法都能独立地完成这件事只有各个步骤都完成了,才能完成这件事区别三各类办法之间是互斥的、并列的、独立的,分类要做到“不重不漏”各步之间是关联的、独立的,分步要做到“步骤完整”联系两个原理都可用来计算完成某件事的方法种数,最终目的都是完成某件事1判断(正确的打“”,错误的打“”)(1)在分类计数原理中,两类不同方案中的方法可以相同()(2)在分类计数原理中,每类方案中的方法都能完成这件事()(3)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的()(4)在分步计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事()解析(1)在分类计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的(2)在分类计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这件事(3)因为在分步计数原理中的每一步都有多种方法,而每种方法各不相同(4)因为在分步计数原理中,要完成某件事需分几个步骤,而每步都不能完成这件事,只有各步都完成了,这件事才算完成答案(1)(2)(3)(4)2从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为()A1113B3429C34224D以上都不对B分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法所以,共有3429种不同的走法3有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有_种9分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法共有33119种监考的方法4某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息(1)若小明爸爸任选一个凳子坐下(小明不坐)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文常见的反义词总结
- 中国联通海东市2025秋招市场与服务类专业追问清单及参考回答
- 行政岗位考试试题及答案
- 中国广电常德市2025秋招笔试行测题库及答案网络优化与维护类
- 武威市中石化2025秋招笔试模拟题含答案油品分析质检岗
- 中国广电聊城市2025秋招笔试行测题库及答案行业解决方案经理岗
- 亳州市中石化2025秋招面试半结构化模拟题及答案新材料与新能源岗
- 大唐电力安庆市2025秋招采矿工程专业面试追问及参考回答
- 驻马店市中石油2025秋招面试半结构化模拟题及答案炼化装置操作岗
- 大庆市中石油2025秋招面试半结构化模拟题及答案炼化装置操作岗
- 劳动课冰箱清洁课件
- 2025年公共基础知识考试试题及参考答案详解
- 建筑设计数字化协同工作方案
- 新入行员工安全教育培训课件
- 原生家庭探索课件
- 人教版音乐八年级上册-《学习项目二探索旋律结构的规律》-课堂教学设计
- 《中国人民站起来了》课件 (共50张)2025-2026学年统编版高中语文选择性必修上册
- 中国企业供应链金融白皮书(2025)-清华五道口
- 医院常用消毒液的使用及配置方法
- 2022英威腾MH600交流伺服驱动说明书手册
- 分期支付欠薪协议书范本
评论
0/150
提交评论