实体单元整理_第1页
实体单元整理_第2页
实体单元整理_第3页
实体单元整理_第4页
实体单元整理_第5页
已阅读5页,还剩318页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实体单元详细信息本文档共包括31个有限元实体单元简介,全部为ansys help英文帮助文件拷贝。其中的贴图均为用画图软件处理过的图片。为方便阅读特别设置了文档结构,并在每个实体单元介绍完成后有带有绿色标记的横线进行分隔,全部文档共326页。SOLID ElementsProduct CodesSOLID53-D Coupled-Field Solid8 nodes 3-D spaceDOF: UX, UY, UZ, TEMP, VOLT, MAGMP ME EM PP SOLID45 3-D Structural Solid8 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN DS DSS PP SOLID46 3-D 8-Node Layered Structural Solid8 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN PP SOLID62 3-D Magneto-Structural Coupled-Field Solid8 nodes 3-D spaceDOF: UX, UY, UZ, AX, AY, AZ, VOLTMP PP SOLID65 3-D Reinforced Concrete Structural Solid8 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PP SOLID69 3-D Coupled Thermal-Electric Solid8 nodes 3-D spaceDOF: TEMP, VOLTMP ME PR PRN PP SOLID70 3-D Thermal Solid8 nodes 3-D spaceDOF: TEMPMP ME PR PRN DS PP VTSOLID87 3-D 10-Node Tetrahedral Thermal Solid10 nodes 3-D spaceDOF: TEMPMP ME PR PRN DS PP VTSOLID90 3-D 20-Node Thermal Solid20 nodes 3-D spaceDOF: TEMPMP ME PR PRN DS PP VTSOLID92 3-D 10-Node Tetrahedral Structural Solid10 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN DS DSS PP SOLID95 3-D 20-Node Structural Solid20 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN DS DSS PP SOLID96 3-D Magnetic Scalar Solid8 nodes 3-D spaceDOF: MAGMP EM PP SOLID97 3-D Magnetic Solid8 nodes 3-D spaceDOF: AX, AY, AZ, VOLT, CURR, EMFMP EM PP SOLID98 Tetrahedral Coupled-Field Solid10 nodes 3-D spaceDOF: UX, UY, UZ, TEMP, VOLT, MAGMP ME EM PP SOLID117 3-D 20-Node Magnetic Edge20 nodes 3-D spaceDOF: AZMP EM PP SOLID122 3-D 20-Node Electrostatic Solid20 nodes 3-D spaceDOF: VOLTMP EM PP SOLID123 3-D 10-Node Tetrahedral Electrostatic Solid10 nodes 3-D spaceDOF: VOLTMP EM PP SOLID127 3-D Tetrahedral Electrostatic Solid p-Element10 nodes 3-D spaceDOF: VOLTMP EM PP SOLID128 3-D Brick Electrostatic Solid p-Element20 nodes 3-D spaceDOF: VOLTMP EM PP SOLID147 3-D Brick Structural Solid p-Element20 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN PP SOLID148 3-D Tetrahedral Structural Solid p-Element10 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN PP SOLID164 Explicit 3-D Structural Solid8 nodes 3-D spaceDOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ DY SOLID168 Explicit 3-D 10-Node Tetrahedral Structural Solid10 nodes 3-D spaceDOF: UX, UY, UZ, VX, VY, VZ, AX, AY, AZ DY SOLID185 3-D 8-Node Structural Solid or Layered Solid8 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN DS DSS PP VTSOLID186 3-D 20-Node Structural Solid or Layered Solid20 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN DS DSS PP VTSOLID187 3-D 10-Node Tetrahedral Structural Solid10 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PR PRN DS DSS PP VTSOLID191 3-D 20-Node Layered Structural Solid20 nodes 3-D spaceDOF: UX, UY, UZMP ME ST PP SOLID226 3-D 20-Node Coupled-Field Solid20 nodes 3-D spaceDOF: UX, UY, UZ, TEMP, VOLTMP PP SOLID227 3-D 10-Node Coupled-Field Solid10 nodes 3-D spaceDOF: UX, UY, UZ, TEMP, VOLTMP PP SOLID231 3-D 20-Node Electric Solid20 nodes 3-D spaceDOF: VOLTMP EM PP SOLID232 3-D 10-Node Tetrahedral Electric Solid10 nodes 3-D spaceDOF: VOLTMP EM PP AaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaSOLID53-D Coupled-Field SolidMP ME EM PP Product RestrictionsSOLID5 Element DescriptionSOLID5 has a 3-D magnetic, thermal, electric, piezoelectric, and structural field capability with limited coupling between the fields. The element has eight nodes with up to six degrees of freedom at each node. Scalar potential formulations (reduced RSP, difference DSP, or general GSP) are available for modeling magnetostatic fields in a static analysis. When used in structural and piezoelectric analyses, SOLID5 has large deflection and stress stiffening capabilities. See SOLID5 in the Theory Reference for ANSYS and ANSYS Workbench for more details about this element. Coupled field elements with similar field capabilities are PLANE13, SOLID62, and SOLID98.Figure5.1SOLID5 GeometrySOLID5 Input DataThe geometry, node locations, and the coordinate system for this element are shown in Figure 5.1: SOLID5 Geometry. The element is defined by eight nodes and the material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of MUZERO. The EMUNIT defaults are MKS units and MUZERO = 4 x 10-7 Henries/meter. In addition to MUZERO, orthotropic relative permeability is specified through the MURX, MURY, and MURZ material property labels.MGXX, MGYY, and MGZZ represent vector components of the coercive force for permanent magnet materials. The magnitude of the coercive force is the square root of the sum of the squares of the components. The direction of polarization is determined by the components MGXX, MGYY, and MGZZ. Permanent magnet polarization directions correspond to the element coordinate directions. Orthotropic material directions correspond to the element coordinate directions. The element coordinate system orientation is as described in Coordinate Systems. Nonlinear magnetic, piezoelectric, and anisotropic elastic properties are entered with the TB command as described in Data Tables - Implicit Analysis. Nonlinear orthotropic magnetic properties may be specified with a combination of a B-H curve and linear relative permeability. The B-H curve will be used in each element coordinate direction where a zero value of relative permeability is specified. Only one B-H curve may be specified per material.Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the D and the F commands. With the D command, the Lab variable corresponds to the degree of freedom (UX, UY, UZ, TEMP, VOLT, MAG) and VALUE corresponds to the value (displacements, temperature, voltage, scalar magnetic potential). With the F command, the Lab variable corresponds to the force (FX, FY, FZ, HEAT, AMPS, FLUX) and VALUE corresponds to the value (force, heat flow, current or charge, magnetic flux).Element loads are described in Node and Element Loads. Pressure, convection or heat flux (but not both), radiation, and Maxwell force flags may be input on the element faces indicated by the circled numbers in Figure 5.1: SOLID5 Geometry using the SF and SFE commands. Positive pressures act into the element. Surfaces at which magnetic forces are to be calculated may be identified by using the MXWF label on the surface load commands (no value is required.) A maxwell stress tensor calculation is performed at these surfaces to obtain the magnetic forces. These forces are applied in solution as structural loads. The surface flag should be applied to air elements adjacent to the body for which forces are required. Deleting the MXWF specification removes the flag.The body loads, temperature, heat generation rate and magnetic virtual displacement may be input based on their value at the elements nodes or as a single element value BF and BFE. When the temperature degree of freedom is active (KEYOPT(1) = 0,1 or 8), applied body force temperatures BF, BFE are ignored. In general, unspecified nodal values of temperature and heat generation rate default to the uniform value specified with the BFUNIF or TUNIF commands. Calculated Joule heating (JHEAT) is applied in subsequent iterations as heat generation rate.If the temperature degree of freedom is present, the calculated temperatures override any input nodal temperatures.Air elements in which Local Jacobian forces are to be calculated may be identified by using nodal values of 1 and 0 for the MVDI label BF. See the Low-Frequency Electromagnetic Analysis Guide for details. These forces are not applied in solution as structural loads.Current for the scalar magnetic potential options is defined with the SOURC36 element the command macro RACE, or through electromagnetic coupling. The various types of scalar magnetic potential solution options are defined with the MAGOPT command.A summary of the element input is given in SOLID5 Input Summary. A general description of element input is given in Element Input.SOLID5 Input SummaryNodes I, J, K, L, M, N, O, PDegrees of Freedom UX, UY, UZ, TEMP, VOLT, MAG if KEYOPT (1) = 0TEMP, VOLT, MAG if KEYOPT (1) = 1UX, UY, UZ if KEYOPT (1) = 2UX, UY, UZ, VOLT if KEYOPT(1) = 3TEMP if KEYOPT (1) = 8VOLT if KEYOPT (1) = 9MAG if KEYOPT (1) = 10Real Constants NoneMaterial Properties EX, EY, EZ, (PRXY, PRYZ, PRXZ or NUXY, NUYZ, NUXZ), ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY, THSZ), DENS, GXY, GYZ, GXZ, DAMP, KXX, KYY, KZZ, C, ENTH, MUZERO, MURX, MURY, MURZ, RSVX, RSVY, RSVZ,MGXX, MGYY, MGZZ, PERX, PERY, PERZ, plus BH, ANEL, and PIEZ data tables (see Data Tables - Implicit Analysis)Surface Loads Pressure, Convection or Heat Flux (but not both),Radiation (using Lab = RDSF), and Maxwell Force Flags - face 1 (J-I-L-K), face 2 (I-J-N-M), face 3 (J-K-O-N),face 4 (K-L-P-O), face 5 (L-I-M-P), face 6 (M-N-O-P)Body Loads Temperatures- T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)Heat Generations- HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P)Magnetic Virtual Displacements- VD(I), VD(J), VD(K), VD(L), VD(M), VD(N), VD(O), VD(P)Electric Field- EFX, EFY, EFZ. See SOLID5 Assumptions and Restrictions.Special Features Requires an iterative solution for field coupling (displacement, temperature, electric, magnetic, but not piezoelectric)Large deflectionStress stiffeningBirth and deathAdaptive descentKEYOPT(1) Element degrees of freedom:0- UX, UY, UZ, TEMP, VOLT, MAG1- TEMP, VOLT, MAG2- UX, UY, UZ3- UX, UY, UZ, VOLT8- TEMP9- VOLT10- MAGKEYOPT(3) Extra shapes:0- Include extra shapes1- Do not include extra shapesKEYOPT(5) Extra element output:0- Basic element printout2- Nodal stress or magnetic field printoutSOLID5 Output DataThe solution output associated with the element is in two forms Nodal degree of freedom results included in the overall nodal solution Additional element output as shown in Table 5.1: SOLID5 Element Output Definitions.Several items are illustrated in Figure 5.2: SOLID5 Element Output. The element stress directions are parallel to the element coordinate system. The reaction forces, heat flow, current, and magnetic flux at the nodes can be printed with the OUTPR command. A general description of solution output is given in Solution Output. See the Basic Analysis Guide for ways to view results. Figure5.2SOLID5 Element OutputThe Element Output Definitions table uses the following notation:A colon (:) in the Name column indicates the item can be accessed by the Component Name method ETABLE, ESOL. The O column indicates the availability of the items in the file Jobname.OUT. The R column indicates the availability of the items in the results file.In either the O or R columns, Y indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and a - indicates that the item is not available.Table5.1SOLID5 Element Output DefinitionsNameDefinitionORELElement NumberYYNODESElement nodes - I, J, K, L, M, N, O, PYYMATElement material numberYYVOLU:Element volumeYYXC, YC, ZCLocation where results are reportedY3PRESP1 at nodes J, I, L, K; P2 at I, J, N, M; P3 at J, K, O, N; P4 at K, L, P, O; P5 at L, I, M, P; P6 at M, N, O, PYYTEMPInput Temperatures: T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P)YYHGENInput Heat Generations: HG(I), HG(J), HG(K), HG(L), HG(M), HG(N), HG(O), HG(P)YYS:X, Y, Z, XY, YZ, XZComponent stresses11S:1, 2, 3Principal stresses11S:INTStress intensity11S:EQVEquivalent stress11EPEL:X, Y, Z, XY, YZ, XZElastic strains11EPEL:1, 2, 3Principal elastic strains1-EPEL:EQVEquivalent elastic strains 411EPTH:X, Y, Z, XY, YZ, XZThermal strains11EPTH:EQVEquivalent thermal strains 411LOCOutput location (X, Y, Z)11MUX, MUY, MUZMagnetic permeability11H: X, Y, ZMagnetic field intensity components11H:SUMVector magnitude of H11B:X, Y, ZMagnetic flux density components11B:SUMVector magnitude of B11FJBLorentz magnetic force components (X, Y, Z)1-FMXMaxwell magnetic force components (X, Y, Z)1-FVWVirtual work force components (X, Y, Z)11FMAG:X, Y, ZCombined (FJB or FMX) force components-1EF:X, Y, ZElectric field components (X, Y, Z)11EF:SUMVector magnitude of EF11JS:X, Y, ZSource current density components11JSSUMVector magnitude of JS11JHEAT:Joule heat generation per unit volume11D:X, Y, ZElectric flux density components11D:SUMVector magnitude of D11UE, UD, UMElastic (UE), dielectric (UD), and electromechanical coupled (UM) energies 11TG:X, Y, ZThermal gradient components11TG:SUMVector magnitude of TG11TF:X, Y, ZThermal flux components11TF:SUMVector magnitude of TF (heat flow rate/unit cross-section area)11FACEFace label22AREAFace area22NODESFace nodes2-HFILMFilm coefficient at each node of face2-TBULKBulk temperature at each node of face2-TAVGAverage face temperature22HEAT RATEHeat flow rate across face by convection22HEAT RATE/AREAHeat flow rate per unit area across face by convection2-HFLUXHeat flux at each node of face2-HFAVGAverage film coefficient of the face22TBAVGAverage face bulk temperature-2HFLXAVGHeat flow rate per unit area across face caused by input heat flux-21. Element solution at the centroid printed out only if calculated (based on input data).2. Nodal stress or magnetic field solution (only if KEYOPT(5) = 2). The solution results are repeated at each node and only if a surface load is input.3. Available only at centroid as a *GET item.4. The equivalent strains use an effective Poissons ratio: for elastic and thermal this value is set by the user (MP,PRXY).Table 5.2: SOLID5 Item and Sequence Numbers lists output available through the ETABLE command using the Sequence Number method. The following notation is used in Table 5.2: SOLID5 Item and Sequence Numbers: Name output quantity as defined in the Table 5.1: SOLID5 Element Output DefinitionsItem predetermined Item label for ETABLE commandE sequence number for single-valued or constant element dataI,J,.,P sequence number for data at nodes I,J,.,PFCn sequence number for solution items for element Face nTable5.2SOLID5 Item and Sequence NumbersOutput Quantity NameETABLE and ESOL Command InputItemEIJKLMNOPP1SMISC-2143-P2SMISC-56-87-P3SMISC-910-1211-P4SMISC-1314-1615P5SMISC-18-1719-20P6SMISC-21222324MUXNMISC1-MUYNMISC2-MUZNMISC3-FVWXNMISC4-FVWYNMISC5-FVWZNMISC6-FVWSUMNMISC7-UENMISC16-UDNMISC17-UMNMISC18-Output Quantity NameETABLE and ESOL Command InputItemFC1FC2FC3FC4FC5FC6AREANMISC192531374349HFAVGNMISC202632384450TAVGNMISC212733394551TBAVGNMISC222834404652HEAT RATENMISC232935414753HFLXAVGNMISC243036424854SOLID5 Assumptions and Restrictions When using SOLID5 with SOURC36 elements, the source elements must be placed so that the resulting Hs field fulfils boundary conditions for the total field. The element must not have a zero volume or a zero length side. This occurs most frequently when the element is not numbered properly. Elements may be numbered either as shown in Figure 5.1: SOLID5 Geometry or may have the planes IJKL and MNOP interchanged. A prism shaped element may be formed by defining duplicate node numbers as described in Triangle, Prism and Tetrahedral Elements. The difference scalar magnetic potential option is restricted to singly-connected permeable regions, so that as in these regions, the resulting field H0. The reduced scalar and general scalar potential options do not have this restriction. At a free surface of the element (i.e., not adjacent to another element and not subjected to a boundary constraint), the normal component of magnetic flux density (B) is assumed to be zero. Temperatures and heat generation rates, if internally calculated, include any user defined heat generation rates. The thermal, electrical, magnetic, and structural terms are coupled through an iterative procedu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论