提高乘除法应用综合题的解题能力.doc_第1页
提高乘除法应用综合题的解题能力.doc_第2页
提高乘除法应用综合题的解题能力.doc_第3页
提高乘除法应用综合题的解题能力.doc_第4页
提高乘除法应用综合题的解题能力.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

提高乘除法应用综合题的解题能力在日常教学中,我们常发现,一些用语言阐述的数学问题干瘪无味,学生难于分析理解,特别是空间观念差的学生,而借助于一些线段图、点子图、模象图、树形图、长方形(或正方形)面积图、集合图、直观图等来帮助学生正确理解数量关系,便会使问题简明、形象、直观。这种充分利用“形”把一定的数量关系形象地表示出来,从而解决数学问题的思想,我们即可称之为数形结合的思想培养学生分析问题、解决问题的能力。1、利用数量关系式解题解答分数应用题,往往要抓住题中的“中心句”进行分析,从“中心句”中找出单位“1”和“相关联的两个量”,明确“相关联的两个量”之间的关系,根据分数乘法的意义写出关系式。如:在“延续生命”献爱心活动中,我校五年级学生捐款3500元,六年级捐的是五年级的 ,六年级学生捐款多少元?这里把“五年级学生的捐款数”看作单位“1”,五年级和六年级是相关联的两个量,它们的关系是“五年级学生捐款数 =六年级学生捐款数”。从关系式中很容易知道这道题怎么列式计算了。 其实较复杂的题也是一个一个简单的应用题组合而成的,只要学生学会分析,难题也会迎刃而解。平时教师可以口头训练这样的关系式,让学生熟练掌握,这样就会有意想不到的收获,能达到事半功倍的效果。而应用题是灵活多变的,学生在数学学习中如果一味围绕书上的公式、例题转,程式化、机械性地解题,对知识缺乏透彻的掌握,对题目的数量关系不做具体分析,是不可能把应用题学好的。但对具体题目还需作具体的分析,否则就容易出错。 2、借助线段图解题。 数学家华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,成因之一便是脱离实际。”数形结合的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。数形结合思想是充分利用“形”把复杂的数量关系和抽象的数学概念变得形象、直观,能丰富学生的表象,引发联想。在分数乘除应用题教学时经常通过画线段图或面积图弄清题意,分析数量关系,拓宽解题思路,能引导学生迅速找到解决问题的方法。“线段图”直观、明了,能让学生很清楚地看出两种量的关系,谁多谁少一目了然,便于学生判断,能培养学生的判断能力。教师在教学生画图时要有耐心,学生刚接触线段图,有很多困难,先画什么,后画什么,要把哪条线段平均分成“几”份,容易混淆,教学时要让学生尝试,发现问题,教师引导纠错,使学生印象深刻。如:客货两车分别从A、B两地同时出发,相向而行,它们在离中点20千米处相遇,这时货车行了全程的 。A、B两地相距多少千米? 教师引导学生分析、画图 从图中很容易看出客车比货车多行(202)千米,正好占两地距离的 (1 2)。所以这道题可以列式为:202(1- 2)(当然也可以用方程解答)。只要我们平时多引导,多启发,让学生在学习中积累经验,学生一定能用这种方法解决很多现实生活中的问题。 3、列方程解题 有些应用题不能用乘法解答,可鼓励学生用方程解答。列方程解应用题是学生熟悉的解题方法之一,教学中教师要引导学生认真分析题意,从题里找出等量关系式,作为列方程的依据。列方程解应用题是一种顺向思维,把问题连同已知条件一起参加列式,学生容易掌握,也为进入中学学习方程打下一定的基础。 如上例:可设AB两地间的距离为X千米。列方程为:(1- 2)X=202 4、利用归一法解题,为学生渗透变换思想。 归一法在小学阶段用得较多,学生对这种方法容易理解,只要学生掌握两个相关联的量各有几份,就能很轻松地的解答有关的生活问题,也为后面学生比例打下一定的基础。不过,这种解答方法如果结合线段图理解,就更方便了。如:学校打算用1500元购买一批新书故事书和科技书。其中故事书的钱数比科技书的钱数多 ,故事书和科技书各要多少钱?先引导学生画图: 从图中不难看出,科技书占7份,故事书占8份,它们共占15份,可先求出每份数,即150015=100(元),这样就能很快算出故事书和科技书的钱数。 变换思想是将一种思维形式转变成另一种思维形式的数学思想。它具有化复杂为简单、化抽象为直观、化生疏为熟悉等作用,以沟通数学知识间的联系,是数学中常见的思想方法。尤其在分数乘除法应用题教学时经常要求学生把复杂分数应用题中的数量关系熟练地转化为简单应用题的数量关系,同样分数应用题与份数、比、按比例分配应用题也都有内在联系,可以互相转化,拓展学生解题思路。 应用题的解题方法多种多样,各有所长,各有所短,只要我们在教学中认真引导,学生一定能取得更好的成绩。学生有时解题困难,是因为不善

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论