吉林省松原市扶余县第一中学高三数学 常用逻辑用语复习课件 新人教A版 .ppt_第1页
吉林省松原市扶余县第一中学高三数学 常用逻辑用语复习课件 新人教A版 .ppt_第2页
吉林省松原市扶余县第一中学高三数学 常用逻辑用语复习课件 新人教A版 .ppt_第3页
吉林省松原市扶余县第一中学高三数学 常用逻辑用语复习课件 新人教A版 .ppt_第4页
吉林省松原市扶余县第一中学高三数学 常用逻辑用语复习课件 新人教A版 .ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

付费下载

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

常用逻辑用语 全称量词与存在量词含有一个量词的命题的否定 复习回顾 1 全称量词与存在量词的含义及其符号表示分别是什么 2 全称命题与特称命题的含义及其一般表示形式分别是什么 含义 特称命题 全称命题 含有存在量词的命题 x m p x x0 m p x0 含有全称量词的命题 一般表示形式 复习回顾 复习回顾 3 全称命题与特称命题的真假判断 假命题 真命题 对任意x m都有p x 成立 存在x0 m使得p x0 成立 x0 m p x0 x m p x 存在x0 m使得p x0 不成立 对任意x mp x 不成立 复习回顾 4 如何得到命题p的否定 它们的真假性之间有何联系 命题的否定即 p 它是对命题p的全盘否定 p与 p的真假相反 探究1 写出下列命题的否定 否定 并非所有的矩形都是平行四边形 也就是说 否定 并非每一个素数都是奇数 也就是说 否定 并非任意的实数x都使不等式成立 也就是说 全称命题p 它的否定 p 全称命题的否定是特称命题 典例讲评 例1写出下列全称命题的否定 1 p 所有能被3整除的整数都是奇数 2 p 每一个四边形的四个顶点共圆 3 p x z x2的个位数字不等于3 典例讲评 例1写出下列全称命题的否定 1 p 所有能被3整除的整数都是奇数 p 存在一个能被3整除的整数不是奇数 典例讲评 例1写出下列全称命题的否定 2 p 每一个四边形的四个顶点共圆 p 存在一个四边形 其四个顶点不共圆 典例讲评 例1写出下列全称命题的否定 3 p x z x2的个位数字不等于3 p x0 z x02的个位数字等于3 探究2 写出下列命题的否定 否定 不存在绝对值是正数的实数 也就是说 否定 没有一个平行四边形是菱形 也就是说 否定 不存在实数x使不等式成立 也就是说 它的否定 p 特称命题p 特称命题的否定是全称命题 典例讲评 例2写出下列特称命题的否定 1 p x0 r x02 2x0 2 0 2 p 有的三角形是等边三角形 3 p 有一个素数含有三个正因数 典例讲评 例2写出下列特称命题的否定 1 p x0 r x02 2x0 2 0 p x r x2 2x 2 0 典例讲评 例2写出下列特称命题的否定 2 p 有的三角形是等边三角形 p 所有的三角形都不是等边三角形 典例讲评 例2写出下列特称命题的否定 3 p 有一个素数含有三个正因数 p 每一个素数都不含三个正因数 典例讲评 例3写出下列命题的否定 并判断其真假 1 p 任意两个等边三角形都相似 2 p x r x2 2x 2 0 3 至少有一个实数x0 使 4 p a r 直线 2a 3 x 3a 4 y a 7 0经过某定点 5 p k r 原点到直线kx 2y 1 0的距离为1 典例讲评 例3写出下列命题的否定 并判断其真假 1 p 任意两个等边三角形都相似 p 存在两个等边三角形 它们不相似 假命题 典例讲评 例3写出下列命题的否定 并判断其真假 2 p x0 r x02 2x0 2 0 p x r x2 2x 2 0 真命题 典例讲评 3 至少有一个实数x0 使 假命题 例3写出下列命题的否定 并判断其真假 4 p a0 r 直线 2a0 3 x 3a0 4 y a0 7 0不经过该定点 假命题 例3写出下列命题的否定 并判断其真假 典例讲评 4 p a r 直线 2a 3 x 3a 4 y a 7 0经过某定点 例3写出下列命题的否定 并判断其真假 典例讲评 5 p k r 原点到直线kx 2y 1 0的距离不为1 真命题 5 p k r 原点到直线kx 2y 1 0的距离为1 熟能生巧 1 写出下列命题的否定 1 p a b是异面直线 使 2 p 熟能生巧 2 至多有三个 的否定为 b a 至少有三个b 至少有四个 c 有三个d 有四个 3 三个数a b c不全为0的否定是 熟能生巧 d a a b c都不是0 c a b c至少有一个为0 b a b c至多一个是0 d a b c都为0 小于或等于 不等于 大于或等于 不是 不都是 至少2个 一个也没有 存在一个 且 或 课堂小结 1 对含有一个量词的全称命题与特称命题的否定 既要考虑对量词的否定 又要考虑对结论的否定 即要同时否定原命题中的量词和结论 课堂小结 2 在命题形式上 全称命题的否定是特称命题 特称命题的否定是全称命题 这可以理解为 全体 的否定是 部分 部分 的否定是 全体 知识延伸 写出下列命题的否命题及命题的否定形式 并判断真假 1 若x y都是奇数 则x y是奇数 否命题 若x y不都是奇数 则x y不是奇数 命题的否定 若x y都是奇数 则x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论