浙教版初中数学关于动点问题的总结.doc_第1页
浙教版初中数学关于动点问题的总结.doc_第2页
浙教版初中数学关于动点问题的总结.doc_第3页
浙教版初中数学关于动点问题的总结.doc_第4页
浙教版初中数学关于动点问题的总结.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙教版 初中数学 关于动点问题的总结“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想一、建立函数解析式函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,一、应用勾股定理建立函数解析式例1(2000年上海)如图1,在半径为6,圆心角为90的扇形OAB的弧AB上,有一个动点P,PHOA,垂足为H,OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.(2)在RtPOH中, , .在RtMPH中,.=GP=MP= (03).动点M,N同时从B点出发,分别沿BA,BC运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒. (1)若a=4厘米,t=1秒,则PM=厘米; (2)若a=5厘米,求时间t,使PNBPAD,并求出它们的相似比; (3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由. 4 以双动点为载体,探求函数最值问题 例4 (2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交RtACD的直角边于H;过F作FG垂直AC交RtACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为S1,AE、EB、BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题: (1)当0X(2)若y是S1与S2的和,求y与x之间的函数关系式; (图10为备用图) 求y的最大值. 解 (1)以E、F、G、H为顶点的四边形是矩形,因为正方形ABCD的边长为82,所以AC=16,过B作BOAC于O,则OB=89,因为AE=x,所以S2=4x,因为HE=AE=x,EF=16-2x,所以S1=x(16-2x), 当S1=S2时, 4x=x(16-2x),解得x1=0(舍去),x2=6,所以当x=6时, S1=S2. (2)当0x8时,y=x(16-2x)+4x=-2x2+20x, 当8x16时,AE=x,CE=HE=16-x,EF=16-2(16-x)=2x-16, 所以S1=(16-x)(2x-16), 所以y=(16-x)(2x-16)+4x=-2x2+52x-256. 当0x8时,y=-2x2+20x=-2(x-5)2+50,所以当x=5时,y的最大值为50. 当8x16时,y=-2x2+52x-256=-2(x-13)2+82, 所以当x=13时,y的最大值为82. 综上可得,y的最大值为82. 评析 本题是以双动点为载体,正方形为背景创设的函数最值问题.要求学生认真读题、领会题意、画出不同情况下的图形,根据图形建立时间变量与其它相关变量的关系式,进而构建面积的函数表达式. 本题在知识点上侧重对二次函数最值问题的考查,要求学生有扎实的基础知识、灵活的解题方法、良好的思维品质;在解题思想上着重对数形结合思想、分类讨论思想、数学建模等思想的灵活运用. 四:函数中因动点产生的相似三角形问题 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。求抛物线的解析式;(用顶点式求得抛物线的解析式为)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论