基于RBF神经网络电液伺服系统智能控制的在线辨识与PID参数自适应整定ppt课件.ppt_第1页
基于RBF神经网络电液伺服系统智能控制的在线辨识与PID参数自适应整定ppt课件.ppt_第2页
基于RBF神经网络电液伺服系统智能控制的在线辨识与PID参数自适应整定ppt课件.ppt_第3页
基于RBF神经网络电液伺服系统智能控制的在线辨识与PID参数自适应整定ppt课件.ppt_第4页
基于RBF神经网络电液伺服系统智能控制的在线辨识与PID参数自适应整定ppt课件.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 基于RBF神经网络电液伺服系统智能控制的在线辨识与PID参数自适应整定 2 研究内容 课题研究意义控制系统建模RBF在线辨识与PID参数自适应整定系统仿真结论后续工作参考文献 课题研究意义 电液控制伺服系统具有精度高 响应快 便于调节的特点 同时又能控制大惯量实现大功率输出 因而在工业控制领域得到广泛的应用 但是电液伺服控制系统本质上是非线性系统 具有多变量 强耦合 非线性的特点 采用常规的PID控制时系统的控制性能对模型的误差比较敏感 在系统工况变化较大时 系统的中体控制精度不高 不能满足工作装置的控制要求 智能控制无论在理论上还是应用技术上都取得了实质性的发展 在控制领域 神经网络具有自学习自适应能力和强大的非线性映射能力 为解决非线性系统的建模和控制提供了一条有效的途径 本课题 首先建立单通道电液位置伺服控制系统的数学模型 然后根据该模型获取被控系统的输入输出数据 在实际生产过程中 对象的特性和模型随时都在变化 只不过变化比较缓慢而已 整定和优化好的PID 在一段时间后 就可能不再有很好的控制效果 为了使生产过程始终保持良好的控制效果 就要对PID控制器的参数进行在线调整和优化 神经智能PID控制器可分为两大部分 神经网络辨识器 通过辨识器来辨识被控对象的模型和特征 在辨识的基础上通过神经网络控制器实现PID参数在线调整和优化 控制系统建模 被控对象的数学描述stewart平台运动控制系统控制原理图如下所示 该电液位置伺服控制系统各液压缸的控制互相独立的 并且各分支的结构和控制系统的组成是相同的 本文对一个分支的液压伺服系统的数学模型进行分析 其系统控制框图如下 该计算机控制系统由液压缸 电液伺服阀 伺服放大器 位移传感器 A D与D A卡等环节组成 控制系统结构框图 液压缸传递函数的确定伺服系统的负载有弹性负载和惯性负载 在很多情况下是以惯性负载为主 没有弹性负载或弹性负载很小可以忽略 平台液位控制系统的相关参数如上表所示 带入表中的数值可求得液压缸的传递函数模型 电液伺服阀传递函数的确定电液伺服阀的传递函数是伺服阀动态特性的近似线性解析描述 但是具体采用什么环节应根据系统的频宽和伺服阀的频率而定 当伺服阀线圈转折频率大于伺服阀的固有频率时 伺服阀的传递函数可以近似为比例环节 当伺服阀的固有频率大于液压固有频率时可简化为惯性环节 本文从实际角度出发 取二阶环节 即 本文选用的是中国航空附件研究所生产的FF102伺服阀 伺服阀的相关参数均从其使用说明书查得 所以可得从伺服放大到液压缸的传递函数为 传统的系统辨识理论的主要内容就相应的变成神经网络拓扑结构的选择 神经网络辨识模型结构的选择 神经网络的学习训练 本文采用RBF神经网络构造动态辨识网络 由电液控制系统的理论模型分析可知 简化以后的是一个三到五阶的系统 根据系统的非线性描述方式 把研究系统的输出的延迟作为RBF辨识网络的输入 延迟的步数由系统模型的阶次确定 这样根据阶次即可确定RBF辨识网络输入层神经元个数 RBF在线辨识与PID参数自适应整定 RBF神经网络结构及其学习算法RBF神经网络隐层节点函数的选择高斯函数 函数优点 表示形式简单 即是对于多变量输入也不增加太多的复杂性 竞相对称 光滑型号 任一阶导数均存在 由于该基函数表示简单其解析性好 因而便于进行理论分析 RBF神经网络学习算法确定隐层个数L m个径向基函数的中心向量c 基函数宽度b 从隐层到输出层的各连接权w 根据经验选取中心 L个中心应具有 代表性 采用梯度下降法确定RBFNN的输出权w 节点中心c及节点基宽度b 选取算法如下 式中 为学习速率 为动量因子 说明 梯度下降法的缺点是容易陷入局部最优值 收敛速度慢 针对这个问题 本课题采用改进算法 变步长梯度下降法 解决方法 为了避免网络初始训练值时稳定性差 使训练的权值 跳 出局部最优 改进公式如下 步长随误差的变化而自适应调整 当 本次误差小于上次误差 说明搜索方向正确 此时应增大步长 当 本次误差大于上次误差 此时应减少步长 放慢搜索速度 神经网络辨识技术神经网络系统辨识实质上是选择一个适当的神经网络模型来逼近实际系统的数学模型 系统辨识的原理就是通过调整辨识模型的结构来使e最小 在神经网络系统辨识中 神经网络用作辨识模型 将对象的输入输出状态u y看作神经网络的训练样本数据 以J 1 2e2作为网络训练的目标 则通过用一定的训练算法来训练网络 使J足够小 就可以达到辨识对象模型的目的 本文采用基于高斯函数的RBF神经网络辨识器 则网络结构如下 RBFNN隐层第J个节点的中心矢量为 设RBF神经网络隐层节点基宽向量为 bj为隐层节点j的基宽度参数 且为大于零的数 网络的权向量为 辨识网络输出为 设第K时刻辨识系统的理论输出为y k 辨识网络的输出为ym k 则辨识器的性能指标为 PID参数自适应整定基于RBF神经网络整定PID控制框图 PID参数整定采用增量式PID控制器 控制误差为 PID三个输入为 控制算法为 神经网络整定指标为 KP KI Kd的调整采用梯度下降法 式中 可以通过神经网络的辨识而得 第k时刻的可近似等于 其中X1是包含u的一维向量 则所以 系统仿真 电液伺服控制系统本质上是非线性系统 基于前章控制系统的建模 RBFNN的结构选取3 6 1 RBFNN采用改进的梯度下降法 网络辨识三个输入为 u k yout k yout k 1 S 1表示输入信号是rin k 1 0 S 2表示输入信号rin k sgn sin 2 pi k 系统仿真输出如图1到图8 结论 本文对神经网络控制器应用于电液伺服控制系统时的模型建立以及参数整定方法进行深入的研究 利用变步长梯度下降法对输入神经网络的参数 进行调节 采用的RBF神经网络结构较易确定 学习算法简单 训练速度快 非线性映射能力强 适合作在线辨识模型算法 仿真和实验研究表明系统的自学习自适应能力很强 具有良好的动静态特性 鲁棒性以及抗干扰能力 后续工作 参考文献 1 许益民 电液比例控制系统分析与设计 M 北京 机械工业出版社 2002 10 1 5 227 231 2 樊京 刘叔军 盖晓华 崔世林 MATLAB控制系统应用与实例 M 北京 清华大学出版社 2008 5 3 寒露 高英杰 液压挖掘机的神经网络控制研究 J 液压与气动 2008 10 46 18 4 林嘉宇 刘荧 RBF神经网络梯度下降训练方法的学习步长优化 J 信号处理 2002 18 1 43 48 5 启宏杰 尔朕洁 刘强 陈敬泉 陈维钧 基于神经网络多步预测的自适应PID控制 J 北京航空航天大学学报 2001 4 27 2 153 156 6 任子武 高俊山 基于神经网络的PID控制器 J 控制理论与应用 2004 23 5 16 19 7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论