数学发展与人类进步.doc_第1页
数学发展与人类进步.doc_第2页
数学发展与人类进步.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学发展与人类进步数学,这个熟悉得不能再熟悉的词,它听起来很熟悉,但是它又那么的新颖;它看上去很简单,但是它却又那么的深奥;它似乎无足轻重,但是它却贯穿人类文明史。数学与人类文明的进步息息相关!为什么这么说呢?数学是人类文明进步的力量。或许我们会说:“社会发展、文明的进步主要是依靠科学技术推动生产力和生产关系的发展,依靠名族文化素质的不断提高,和数学有什么关系啊?”但是,纵观古今中外人类文明的发展史,任何时期、任何朝代,无论是政治、军事还是经济、文化的进步,数学都无一例外地骑着巨大的推动作用。在当今世界,数学起着不可替代的作用。在我们的课本知识中,数学的身影随处可见。爱因斯坦建立了广义相对论是因为他深受数学家黎曼的著作的影响;海森,这个量子力学的创始人,正是运用了数学中的矩阵来描述物理量,从而建立了量子力学;数学家拉顿在积分几何中引入了一种数学变换(又称拉顿变换),几十年后柯尔马克和洪斯菲尔德巧妙地运用拉顿变换,设计出X射线断层扫描仪-CT,为医学诊断技术作出了巨大贡献;1900年-1965年世界范围内社会科学方面的62项重大成就中,数学化的定量研究就占了2/3;1969年至1981年间颁发的13个诺贝尔经济学奖中,就有7项成果借用了现代数学理论。在高新科技领域,数学可以说是一种基础学科,没有数学,其他的一切都是没有用的。应用数学方法并借助计算机的计算、模拟、仿真和控制来实现计算机行业的软件比重早已超过硬件,而软件技术本质上就是数学技术。数学还可以大幅度提高科技含量,在竞争中掌握主动权。比如说,日本从60年代起就投入巨资研制模拟式高清晰度电视,几十年过去了仍然没什么起色,而美国在1991年提出了先进的数字式系统,迫使日本推出竞争;波音-777民航机由于采用了百分百的数字手段,使得产品从确定计划到样机出厂只用了三年半的时间,在国际市场竞争中掌握了主动权。在军事领域中,数学更是不可或缺的。在现代战争中,数学的技术广泛地应用于其中。1991年的海湾战争前,美国曾顾虑伊拉克会点燃科威特的油井而引起全球性污染,一直对发动海湾战争迟疑不决,一家公司利用流体力学的基本原理及热传导方法建立了数学模型,并用计算机仿真,得出了伊拉克不会点燃油井的结果,使得美军对发动战争的阻碍更小了,对美军发动海湾战争起了相当大的作用。当然我们认为美国发动海湾战争是错的,这是毋庸置疑的,这在本文章中暂不讨论。在经济和管理过程中,数学也不是肤浅地存在于其中,它在其中每一个环节都扮演了重要角色。任何一个产品,从原材料检验、下料、分类、运输、供应,到产品毛坯的准备、加工、物流、贮存、检测、装配、包装,到销售、服务、市场开发,直到市场信息反馈、成本核算、产品改进设计等等,数学中的最优化决策论原理促进了产品设计、生产与开发的科学化,促进了经济的发展,促进了管理的规范化。是数学让我们的经济更为发达,让我们的管理更具竞争力。甚至在离我们最近的生活中,数学也与我们息息相关。我们在与别人交易的时候,我们要用数学来计算。我们坐车需要计算路程,我们生产需要计算成本,我们坐飞机需要计算时间,我们创业需要计算风险,我们买高端物品需要计算我们的能力,我们数学作为一种文化,它早已超越了数学本身的作用,它已具有比数学知识更为丰富和深邃的文化内涵,数学文化对数学知识、技能、能力和素质等概念的高度概括。通过学习数学,我们可以接受数学精神和数学思想方法的熏陶,提高思维能力。锻炼意志和品质,并把他们迁移到学习、工作和生活中去。曾有一位日本数学家认为,学生在进入社会后,如果没有什么机会应用,那么作为知识的数学通常在出校门后不到一两年就会忘掉,然而不管人脉从事什么工作,那种铭刻在脑中的数学精神和数学思想方法会长期在他们的生活和工作中发挥重要作用。数学可以培养人正直与诚实的品质,可以培养人的顽强与勇气,可以培养人的整体意识,可以培养人的优化意识,所以说数学对人类文明的进步的推动作用是巨大的,也是不可替代的,没有数学的产生,人类文明就不会进步得如此之快,人类的素质就不会提高得如此之快,人类的高新科技就不会如此眼花嘹亮地产生。没有数学,或许我们在过着农耕社会的生活,或许我们的国家正在分崩离析,或许我们连物质需求都无法得到满足,或许我们还在打战,或许还有很多人无家可归。没有数学,也就不会有我们今天的美好生活。然而,不是在哪里都可以产生数学的,不是任何时间都可以产生数学的,不是任何生物都可以产生数学的。数学,他只能由人类来产生,只能在人类文明到来之后才能产生,只能在特定的时间产生。数学是人类文明的产物,他是人类文明的见证者。数学的发展需要人类社会的进步,需要人类文明的进步。下面我就举具体的例子。中国南宋的数学家秦九韶是一位比较伟大的,做出的贡献比较突出的数学家。他所在的年代正值工程技术、农田水利、海运交通、钱粮经济、商品交易、军事后勤等方面蓬勃发展的年代,秦九韶的父亲长期从政,以及他自己也曾出任地方行政官吏,他得以广泛接触这些方面,并且由于他好学,经常向制定历法的官员学习造历知识,秦九韶掌握了丰富的实践知识,为他以后发现很多数学知识奠定了基础。我们也知道,秦九韶在数学方面的成就是惊人的。他完整地保存了中国数码字计数法:自然数、分数、小数、负数都有专门的论述;他首创连环求等,求几个数的最小公倍数;他更进一步认识比例,比例项数达到5项之多,层层变换,有条不紊;他一次同余式组的程序化解法,创大衍求一术;他的三斜求积公式,使海伦公式不专美于前;他创造线性方程组的直除法(即加减消元法),将系数矩阵化为单位矩阵;他用正负开方数值解多项式。特别值得一提的是秦九韶在一次同余论方面的创造发明是有划时代意义的。西欧在一次同余理论上之有与秦九韶同等水平,是由欧拉、拉格朗日与高斯三代人,三大师前后历经18至19世纪的60多年探索才达到的,特别是高斯24岁年华时(1801年)发表名著算术研究,其中第l、2两章才全面论述一次同余理论。而印度数学先驱阿耶波多(476550年)在其文集第2章第32、33节对同余式的解法有过议论,但仅有四句押韵诗传世,自称为库塔卡术(义:碾细),含义隐晦,经后人一再补充注释,人们才理解其用意。可见当时南宋的数学在世界上是领先的,而且是遥遥领先。而这一切得益于当时南宋对工程技术、农田水利、海运交通、钱粮经济、商品交易、军事后勤等方面的科技需求,得益于南宋对数学的超高要求,而这归根结底又得益于南宋对人才的需求。秦九韶生在了一个相对其他朝代思想更为活跃的年代,因而他得以体现出他的数学天赋,数学在南宋才得以快速发展。再举一个例子,就是数学王子高斯,高斯10岁就掌握了等差数列求和的方法,而且是自己琢磨出来的,这实属不易。高斯所处的年代是第二次工业革命,当时西方社会的思想解放热潮正热火朝天的进行着,解放思想的风吹到了数学方面,这等于是给拥有高度数学天赋的高斯插上了翅膀,让他得以充分发挥出他的数学天赋。人类文明的发展进步,促成了数学的的产生和发展,数学的发展又反过来促进了人类文明的进步。数学文明和人类进步是相辅相成的,数学的发展需要人类文明更加进步,需要人类的素质更加高,需要人类的头脑更为发达,人类的进步也需要数学更为深奥,需要数学被应用得更为广泛,需要数学更为全面。总之,人类需要全面推进对数学的研究,让数学为人类作出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论