2020版高考数学大二轮复习专题三立体几何第二讲立体几何中的综合问题限时规范训练文.docx_第1页
2020版高考数学大二轮复习专题三立体几何第二讲立体几何中的综合问题限时规范训练文.docx_第2页
2020版高考数学大二轮复习专题三立体几何第二讲立体几何中的综合问题限时规范训练文.docx_第3页
2020版高考数学大二轮复习专题三立体几何第二讲立体几何中的综合问题限时规范训练文.docx_第4页
2020版高考数学大二轮复习专题三立体几何第二讲立体几何中的综合问题限时规范训练文.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二讲 立体几何中的综合问题1(2019江苏二模)如图,在三棱锥ABCA1B1C1中,ABAC,A1CBC1,AB1BC1,D,E分别是AB1,BC的中点求证:(1)DE平面ACC1A1;(2)AE平面BCC1B1.证明:(1)连接A1B,在三棱柱ABCA1B1C1中,AA1BB1,且AA1BB1,四边形AA1B1B是平行四边形,又D是AB1的中点,D是BA1的中点,在BA1C中,D和E分别是BA1和BC的中点,DEA1C,DE平面ACC1A1,A1C平面ACC1A1,DE平面ACC1A1.(2)A1CBC1,AB1BC1,又由(1)知DEA1C,BC1DE.又AB1DED,BC1平面ADE,AE平面ADE,AEBC1,在ABC中,ABAC,E是BC的中点,AEBC,BC1BCB,AE平面BCC1B1.2(2019呼和浩特一模)如图,平面四边形ABCD,ABBD,ABBCCD2,BD2,沿BD折起,使AC2.(1)证明:ACD为直角三角形;(2)设B在平面ACD内的射影为P,求四面体PBCD的体积解析:(1)证明:在RtABD中,ABBD,AB2,BD2,AD2,AC2,CD2,AC2CD2AD2,ACCD,ACD是直角三角形(2)由(1)知CDAC,CDBC,ACBCC,CD平面ABC,平面ABC平面ACD,其交线为AC,故过B点作AC的垂线,垂足为P,点P即为B在平面BCD内的射影,P为AC的中点,四面体PBCD的体积:VPBCD221.3(2019内蒙古一模)如图所示,在四棱锥PABCD中,PD平面ABCD,底面ABCD是矩形,ADPD,E、F分别是CD、PB的中点(1)求证:EF平面PAB;(2)设ABBC3,求三棱锥PAEF的体积解析:(1)证明:PD平面ABCD,PD平面PAD,平面PAD平面ABCD,又平面PAD平面ABCDAD,底面ABCD是矩形,BAAD,BA平面PAD,则平面PBA平面PAD,ADPD,取PA的中点G,连接FG,DG,则DGPA,DG平面PAB.又E、F分别是CD、PB的中点,G是PA的中点,底面ABCD是矩形,四边形EFGD为矩形,则DGEF,EF平面PAB.(2)由ABBC3,得BC,AB3,ADAP,且F是PB的中点VPAEFVBAEFVFABEVPABESABEPD3.4(2019成都模拟)如图,在等腰梯形ABCD中,ABCD,E,F分别为AB,CD的中点,CD2AB2EF4,M为DF中点现将四边形BEFC沿EF折起,使平面BEFC平面AEFD,得到如图所示的多面体在图中,(1)证明:EFMC;(2)求三棱锥MABD的体积解析:(1)证明:由题意,在等腰梯形ABCD中,ABCD,E,F分别为AB,CD的中点,EFAB,EFCD,折叠后,EFDF,EFCF,DFCFF,EF平面DCF,又MC平面DCF,EFMC.(2)由已知可得,AEBE1,DFCF2,DM1,MF1AE,又AEMF,四边形AEFM为平行四边形,AMEF,故AMDF.平面BEFC平面AEFD,平面BEFC平面AEFDEF,且BEEF,BE平面AEFD,VMABDVBAMDSAMDBE121.即三棱锥MABD的体积为.5(2019兰州模拟)如图,在四棱锥PABCD中,四边形ABCD为平行四边形,PCD为正三角形,BAD30,AD4,AB2,平面PCD平面ABCD,E为PC的中点(1)证明:BEPC;(2)求多面体PABED的体积解析:(1)证明:BD2AB2AD22ABADcosBAD4,BD2,ABD90,BDCD,平面PCD平面ABCD,平面PCD平面ABCDCD,BD平面PCD,BDPC,PCD是正三角形,E为PC的中点,DEPC,PC平面BDE,BEPC.(2)作PFCD,EGCD,F,G为垂足,平面PCD平面ABCD,PF平面ABCD,EG平面ABCD,PCD是正三角形,CD2,PF3,EG,VPABCD2234,VEBCD22,多面体PABED的体积VVPABCDVEBCD43.6(2019汕尾一模)如图,直三棱柱ABCA1B1C1中,ABBCAC2AA12,D是BC的中点(1)证明:A1B平面ADC1;(2)线段BC1是否存在点N,使三棱锥NADC1的体积为?若存在,确定点N的位置;若不存在,说明理由解析:(1)证明:如图,连接A1C,与AC1交于点O,连接OD,在CA1B中,O和D分别是CA1和CB的中点,则ODA1B,又OD平面ADC1,A1B平面ADC1.(2)连接BC1,假设线段BC1上存在点N,使得三棱锥NADC1的体积为,设N到平面ADC1的距离为h,由题意可知,ABC为等边三角形,又D为BC的中点,ADBC.又三棱柱ABCA1B1C1为直三棱柱,BB1AD,故AD平面BCC1B1,ADC1为直角三角形,AD,DC1,ADC1的面积为,由三棱锥的体积公式可知,VNADC1SADC1h,h.又AD平面BCC1B1,平面BCC1B1平面ADC1,故点N到平面ADC1的距离与点N到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论