河南省十所名校2019届高三数学第二次联合考试试题理(尖子生含解析).docx_第1页
河南省十所名校2019届高三数学第二次联合考试试题理(尖子生含解析).docx_第2页
河南省十所名校2019届高三数学第二次联合考试试题理(尖子生含解析).docx_第3页
河南省十所名校2019届高三数学第二次联合考试试题理(尖子生含解析).docx_第4页
河南省十所名校2019届高三数学第二次联合考试试题理(尖子生含解析).docx_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省十所名校2019届高三尖子生第二次联合考试数学(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合,集合,则( )A. B. C. D. 【答案】A【解析】【分析】求出集合A,B,即可求出,再利用交集概念即可求解.【详解】由题可得:,所以,所以故选:A.【点睛】本题主要考查了集合的交、补集运算,属于基础题。2.已知复数满足,则( )A. B. 1C. D. 【答案】C【解析】【分析】令,整理即可得到方程组,解出方程组,问题得解.【详解】令,则可化为:,整理得:所以,解得:,所以故选:C.【点睛】本题主要考查了复数的运算及复数的模知识,考查计算能力,属于基础题。3.已知x,y满足约束条件 ,则zx2+y2的最小值为()A. 5B. 4C. 2D. 【答案】C【解析】【分析】将转化成,只需求的最小值即可,又表示点到原点的距离,只需求原点到可行域的点的距离的最小值即可解决问题。【详解】作出不等式组表示的区域,如下图:其中,可转化成,要求的最小值,只需求的最小值即可,又表示点到原点的距离,由图可得:原点到可行域的点的距离的最小值就是原点到直线的距离,又原点到直线的距离为,所以,.故选:C【点睛】本题主要考查了线性规划知识,考查转化能力及计算能力,属于基础题。4.已知为等差数列的前项和,若,则数列的公差( )A. 4B. 3C. 2D. 1【答案】B【解析】【分析】设等差数列的首项为,公差为,由及列方程组即可求解。【详解】设等差数列的首项为,公差为,由及得:,解得:故选:B【点睛】本题主要考查了等差数列的通项公式及前项和公式,考查方程思想及计算能力,属于基础题。5.在长为2的木棍上随机选择一点切断为两根,它们能够与另一根长为1的木棍组成三角形的概率为( )A. B. C. D. 【答案】C【解析】【分析】设切断以后两根的长分别为,由三角形知识两边之差的绝对值小于第三边列不等式可求得,问题得解。【详解】设切断以后两根的长分别为,由三角形知识两边之差的绝对值小于第三边列不等式可得:,解得:所以它们能够与另一根长为1的木棍组成三角形的概率为.故选:C【点睛】本题主要考查了三角形中的结论及几何概型概率计算,属于基础题6.某几何体的三视图如图所示,则其体积为()A. 4B. C. D. 【答案】D【解析】【分析】还原三视图为一个正方体中的一个四棱锥,依据题中数据即可得解。【详解】如下图,该几何体是边长为2的正方体中的一个四棱锥所以,故选:D【点睛】本题主要考查了三视图还原知识及锥体体积计算,考查空间思维能力,属于基础题。7.执行如图所示的程序框图,若输入的a值为1,则输出k的值为()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】按流程图逐一执行即可得解。【详解】读流程图可得:不成立不成立成立输出故选:D.【点睛】本题主要考查了流程图知识,考查读图能力及计算能力,属于基础题。8.记为数列的前项和,已知和(为常数)均为等比数列,则的值可能为( )A. B. C. D. 【答案】C【解析】【分析】对的公比是否为1分类,可排除,再利用也是等比数列列方程即可得到,分别令,可得只有时才存在满足方程,问题得解。【详解】当时,令(其中为非零常数),整理得:,要使得它对任意的恒成立,则:,解得:,这与为等比数列矛盾.所以,令(其中为非零常数),则,整理得:,要使得它对任意的恒成立,则,整理得:,令,则,解得:,这与为等比数列矛盾.令,则,整理得:,此方程无解。令,则,整理得:,记,所以在上必有一零点。即至少有一个实根.令,则,整理得:,解得:,这与为等比数列矛盾.故选:C.【点睛】本题主要考查了等比数列的定义及求和公式,考查分类思想及转化能力,还考查了计算能力及方程思想,属于中档题。9.5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是()A. 40B. 36C. 32D. 24【答案】B【解析】【分析】先计算出甲与乙必须相邻的情况种数,再计算出甲站在两端且与乙相邻的种数,问题得解。【详解】由题可得:甲与乙必须相邻的情况种数为:种,甲分别站在两端且与乙相邻的种数为:种,所以甲与乙必须相邻,且甲不能站在两端的排法总数是种。故选:B【点睛】本题主要考查了捆绑法排列计算及含特殊要求的排列计算,考查分类思想及转化思想,属于基础题。10.设双曲线:的右焦点为,为坐标原点,若双曲线及其渐近线上各存在一点,使得四边形为矩形,则其离心率为( )A. B. 2C. D. 【答案】A【解析】【分析】求出过原点且与渐近线垂直的直线的方程为,再求出过点F且与渐近线平行的直线方程,联立方程组求出点的坐标为:,将它代入双曲线方程整理即可得解。【详解】依据题意作出如下图像,其中四边形为矩形,双曲线的渐近线方程为:,所以直线的方程为,直线的方程为:,联立直线与直线的方程可得:,解得:,所以点的坐标为:,又点在双曲线上,所以,整理得:,所以.故选:A【点睛】本题主要考查了双曲线的简单性质及方程思想,考查计算能力及转化能力,属于中档题。11.在正方体中,点,分别在棱,上,且,(其中),若平面与线段的交点为,则( )A. B. C. D. 【答案】D【解析】【分析】以点D为坐标原点,建立空间直角坐标系,以方向为方向,以方向为方向,以方向为方向,设正方体的边长为1,分别求出点的坐标及向量的坐标,利用向量加法表示出,列出对应的方程组,解方程组即可得到,问题得解。【详解】如图,以点D为坐标原点,建立空间直角坐标系,以方向为方向,以方向为方向,以方向为方向,设正方体的边长为1,则,因为点在平面内,可设(其中为常数),又与共线,可设,由图可得:,即:,整理得:,由(1)(3)可得:,即:由(2)(3)可得:,即:,联立(4)(5)解得:,代入(2)可得:,整理得:,所以.所以.故选:D.【点睛】本题主要考查了空间向量的加减运算及数乘运算,考查转化能力及计算能力,还考查了空间思维能力,考查了平面向量基本定理知识,属于难题。12.已知函数,方程对于任意都有9个不等实根,则实数的取值范围为( )A. B. C. D. 【答案】D【解析】【分析】令,求出的三个根,并可判断函数是一个奇函数,讨论的单调性,利用要有3个不同的根列不等式即可得到的范围,利用的范围即可排除A.B.C,问题得解。【详解】因为方程对于任意都有9个不等实根,不妨令,则方程有9个不等实根,令,解得:,.所以,都要有3个不同的根由可得:,所以函数为奇函数,又,由有3个不等实根,可得不是单调函数,即:令,解得:,作出的关系如下表:作出的简图如下:要使得有3个根,至少要满足,即:,解得:.即:,排除A,B,C.故选:D.【点睛】本题主要考查了方程的解的个数解决方法,考查了利用导数判断函数的单调性及奇函数特点,还考查了转化思想及计算能力,属于难题。二、填空题:本题共4小题。每小题5分,共20分.13.已知且,则_。【答案】1【解析】【分析】整理得:由此得到,问题得解。【详解】因为,所以,整理得:,又,所以,所以,所以【点睛】本题主要考查了两角和的正弦公式及两角差的余弦公式,考查计算能力,还考查了三角恒等式,属于基础题。14.动点在函数的图象上,以点为圆心作圆与轴相切,则该圆过定点_【答案】【解析】【分析】整理可得:,此函数图像是由函数右平移1个单位而得,再利用抛物线的定义即可求解.【详解】由可得:,此函数图像是由函数右平移1个单位而得,函数的图像是开口向右的抛物线且在轴的上半部,其焦点为,准线方程为:,所以函数的图像也是开口向右的抛物线且在轴的上半部,其焦点为,准线方程为:(轴)由抛物线定义可得:等于点P到轴的距离,所以以点为圆心且与轴相切的圆过定点.【点睛】本题主要考查了函数图像的平移规律及抛物线的简单性质,还考查了抛物线的定义,属于基础题。15.已知点,均位于同一单位圆上,且,若,则的取值范围为_【答案】【解析】【分析】由整理可得:,即:,以圆心为原点,以BC所在直线为轴建立平面直角坐标系,设,由整理得:,所以点P在以原点为圆心,半径为2的圆上运动,由等价转化成,利用整理即可求解。【详解】由可得:,所以,所以,即线段BC为单位圆的直径.以圆心为原点,以BC所在直线为轴建立平面直角坐标系,如下图:则,设,则由可得:,所以点P在以原点为圆心,半径为2的圆上运动,因为,所以,又,所以,即:.【点睛】本题主要考查了数量积的运算及向量的坐标运算,还考查了向量垂直的数量积关系、转化思想及计算能力,考查了向量模的运算,属于难题。16.若函数的图象存在经过原点的对称轴,则称为“旋转对称函数”,下列函数中是“旋转对称函数”的有_.(填写所有正确结论的序号);.【答案】【解析】【分析】对于,求出的反函数为,即可判断原函数是“旋转对称函数”,对于,验证得:,即可判断原函数是“旋转对称函数”,对于,可分析出当时,时,由函数特征即可判断不是“旋转对称函数”.【详解】对于中,的反函数为:,所以函数关于直线对称,故是“旋转对称函数”.对于,所以函数是偶函数,它关于轴对称,故是“旋转对称函数”.对于,当时,则函数的图像只可能关于直线对称,又,当时,这与函数的图像关于直线对称矛盾,故不是“旋转对称函数”.【点睛】本题主要考查了反函数的求解及互为反函数的图像关系,考查了偶函数的图像特征,还考查了分析函数图像特征的能力以及极限思维,考查分析能力及新概念知识,属于难题。三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22,23题为选考题.考生根据要求作答.(一)必考题:共60分.17.在中,内角,所对的边分别为,已知的面积.()求;()作角的平分线交边于点,记和的面积分别为,求的取值范围.【答案】();().【解析】【分析】()由结合整理可得,问题得解.()整理可得:,结合正弦定理得:,问题得解.【详解】解:() .因此,又,所以.(),由正弦定理,知.因为,所以.【点睛】本题主要考查了三角形面积公式及正、余弦定理,考查方程思想及转化思想,考查计算能力,属于基础题。18.某兴趣小组在科学馆的帕斯卡三角仪器前进行探究实验.如图所示,每次使一个实心小球从帕斯卡三角仪器的顶部入口落下,当它在依次碰到每层的菱形挡板时,会等可能地向左或者向右落下,在最底层的7个出口处各放置一个容器接住小球,该小组连续进行200次试验,并统计容器中的小球个数得到柱状图:()用该实验来估测小球落入4号容器的概率,若估测结果的误差小于,则称该实验是成功的.试问:该兴趣小组进行的实验是否成功?(误差)()再取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.(计算时采用概率的理论值)【答案】()是成功的;()详见解析.【解析】【分析】()求出小球落入4号容器的概率的理论值,问题得解.()直接利用二项分布求解。【详解】解:()小球落入4号容器的概率的理论值为.小球落入4号容器的概率的估测值为.误差为,故该实验是成功的.()由()可得,每个小球落入4号容器的概率为,未落入4号容器的概率为.,.的分布列为 0123 由于,所以.【点睛】本题主要考查了二项分布及其期望,考查计算能力,属于基础题。19.如图所示的三棱柱中,平面,的中点为,若线段上存在点使得平面.()求;()求二面角的余弦值.【答案】();().【解析】【分析】()设的长为,分别以,的方向为,轴正方向建立空间直角坐标系,求出各点的坐标,从而求得点的坐标为,求得,利用平面列方程即可求得,问题得解。()求出平面的法向量为,结合()中是平面的一个法向量,利用法向量的夹角坐标表示即可求解。【详解】解:()方法一:设的长为,依题意可知,两两垂直,分别以,的方向为,轴正方向建立空间直角坐标系,如图所示.则,因此,.设,易求得点的坐标为,所以.因为平面,所以.解之得,所以的长为.方法二:如图,在平面内过点作的垂线分别交和于,连接,在平面内过点作的垂线交于,连接.依题意易得,五点共面.因为平面,所以.在中,因此为线段靠近的三等分点.由对称性知,为线段靠近的三等分点,因此,.代入,得.()由()方法一可知,是平面的一个法向量且,.设平面的法向量为,则可以为.因为二面角为锐角,故所求二面角的余弦值为.【点睛】本题主要考查了空间向量的坐标运算及空间直角坐标系,考查向量垂直的坐标表示及方程思想,考查计算能力,还考查了二面角的向量求法,属于中档题。20.椭圆的离心率为且四个顶点构成面积为的菱形.()求椭圆的标准方程;()过点且斜率不为0的直线与椭圆交于,两点,记中点为,坐标原点为,直线交椭圆于,两点,当四边形的面积为时,求直线的方程.【答案】();()或.【解析】【分析】()由离心率为结合得到,结合四个顶点构成面积为的菱形列方程即可求解.()设点,的坐标分别为,点坐标为,设直线的方程为,联立直线与椭圆方程可得:,即可求得直线的方程为,联立直线与椭圆方程即可求得,求出两点到直线的距离,结合四边形的面积为列方程即可求得,问题得解。【详解】解:()设椭圆的焦距为,则,又,所以.因为,所以,故所求椭圆的标准方程为.()设点,的坐标分别为,直线的方程为,与椭圆方程联立,得 .设点坐标为,则有,因此.所以直线的方程为,与椭圆方程联立,得.所以弦长.不妨设点在直线:上方,则点在直线:下方.点到直线的距离为,点到直线的距离为.所以.所以面积 .因此直线的方程为或.【点睛】本题主要考查了椭圆的简单性质及韦达定理,考查中点坐标公式及点到直线距离公式,考查方程思想及计算能力,属于难题。21.已知函数.()当时,求的最小值.()若在区间上有两个极值点,(i)求实数的取值范围;(ii)求证:.【答案】();()(i);(ii)详见解析.【解析】【分析】()求出,列表讨论的单调性,问题得解。()(i)由在区间上有两个极值点转化成有两个零点,即有两个零点,求出,讨论的单调性,问题得解。(ii)由得,将转化成,由得单调性可得,讨论在的单调性即可得证。【详解】解:()当时,令,得.的单调性如下表: -0+ 单调递减 单调递增易知.()(i).令,则.令,得.的单调性如下表: -0+ 单调递减 单调递增在区间上有两个极值点,即在区间上有两个零点,结合的单调性可知,且,即且.所以,即的取值范围是.(ii)由(i)知,所以.又,结合的单调性可知,.令,则.当时,所以在上单调递增,而,因此.【点睛】本题主要考查了导数与函数单调性的关系,考查了分类思想及转化思想,考查了极值与导数的关系,还考查了利用导数证明不等式,考查计算能力及转化能力,属于难题。(二)选考题:共10分.请考生在第22,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论