




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金牌高二数学(暑期)高频考点复习资料第3讲 直线、平面垂直的判定与性质(一)热点透析考查目标 1.考查垂直关系的命题的判定;2.考查线线、线面、面面垂直关系的判定和性质;3.考查平行和垂直的综合问题;4.考查空间想象能力,逻辑思维能力和转化思想达成目标1.熟记、理解线面垂直关系的判定与性质定理;2.解题中规范使用数学语言,严格证题过程;3.重视转化思想的应用,解题中要以寻找线线垂直作为突破(二)知识回顾1 直线与平面垂直(1)判定直线和平面垂直的方法定义法利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也 这个平面(2)直线和平面垂直的性质直线垂直于平面,则垂直于平面内 直线垂直于同一个平面的两条直线 垂直于同一条直线的两平面 2 斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角3 平面与平面垂直(1)平面与平面垂直的判定方法定义法利用判定定理:一个平面过另一个平面的 ,则这两个平面垂直(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于 的直线垂直于另一个平面4 二面角的有关概念(1)二面角:从一条直线出发的 所组成的图形叫做二面角(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱 的射线,则两射线所成的角叫做二面角的平面角难点正本疑点清源1 两个平面垂直的性质定理两个平面垂直的性质定理,即如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面是作点到平面距离的依据,要过平面外一点P作平面的垂线,通常是先作(找)一个过点P并且和垂直的平面,设l,在内作直线al,则a.2 两平面垂直的判定(1)两个平面所成的二面角是直角;(2)一个平面经过另一平面的垂线附件:当堂过手训练(快练五分钟,稳准建奇功!)1 一平面垂直于另一平面的一条平行线,则这两个平面的位置关系是_2. ABC中,ABC90,PA平面ABC,则图中直角三角形的个数是_3 、是两个不同的平面,m、n是平面及之外的两条不同的直线,给出四个论断:mn;n;m,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题_4 设a,b,c是三条不同的直线,是两个不同的平面,则ab的一个充分条件是()Aac,bc B,a,bCa,b Da,b5 (2011辽宁)如图,四棱锥SABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是 ()AACSBBAB平面SCDCSA与平面SBD所成的角等于SC与平面SBD所成的角DAB与SC所成的角等于DC与SA所成的角二、高频考点专题链接题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点证明:(1)CDAE;(2)PD平面ABE.探究提高破解此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础由于“线线垂直”、“线面垂直”、“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在 (2012陕西)(1)如图所示,证明命题“a是平面内的一条直线,b是外的一条直线(b不垂直于),c是直线b在上的投影,若ab,则ac”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明)题型二平面与平面垂直的判定与性质例2(2012江苏)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.探究提高面面垂直的关键是线面垂直,线面垂直的证明方法主要有判定定理法、平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面)、面面垂直性质定理法,本题就是用的面面垂直性质定理法,这种方法是证明线面垂直、作线面角、二面角的一种核心方法 (2011江苏)如图,在四棱锥PABCD中,平面PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD.题型三线面、面面垂直的综合应用例3如图所示,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8,AB2DC4.(1)设M是PC上的一点,求证:平面MBD平面PAD;(2)求四棱锥PABCD的体积探究提高当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直 如图所示,已知长方体ABCDA1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点,(1)求证:EF平面ABCD;(2)设M为线段C1C的中点,当的比值为多少时,DF平面D1MB?并说明理由题型四线面角、二面角的求法例4如图,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点(1)求PB和平面PAD所成的角的大小;(2)证明AE平面PCD;(3)求二面角APDC的正弦值探究提高(1)求直线与平面所成的角的一般步骤:找直线与平面所成的角,即通过找直线在平面上的射影来完成;计算,要把直线与平面所成的角转化到一个三角形中求解(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角 正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A. B. C. D.反思总结解答过程要规范典例:(12分)如图所示,M,N,K分别是正方体ABCDA1B1C1D1的棱AB,CD,C1D1的中点求证:(1)AN平面A1MK;(2)平面A1B1C平面A1MK.温馨提醒(1)步骤规范是答题得满分的最后保证,包括使用定理的严谨性,书写过程的流畅性(2)本题证明常犯错误:定理应用不严谨如:要证AN平面A1MK,必须强调AN平面A1MK.解题过程不完整,缺少关键步骤,如第(1)问中,应先证四边形ANKA1为平行四边形第(2)问中,缺少必要的条件,使思维不严谨,过程不流畅方法与技巧1 证明线面垂直的方法(1)线面垂直的定义:a与内任何直线都垂直a;(2)判定定理1:l;(3)判定定理2:ab,ab;(4)面面平行的性质:,aa;(5)面面垂直的性质:,l,a,ala.2 证明线线垂直的方法(1)定义:两条直线所成的角为90;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a,bab;(4)线面垂直的性质:a,bab.3 证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a,a.4 转化思想:垂直关系的转化在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决失误与防范1在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化2面面垂直的性质定理是作辅助线的一个重要依据我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可巩固练习(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 设l,m是两条不同的直线,是一个平面,则下列命题正确的是()A若lm,m,则lB若l,lm,则mC若l,m,则lmD若l,m,则lm2 已知平面与平面相交,直线m,则()A内必存在直线与m平行,且存在直线与m垂直B内不一定存在直线与m平行,不一定存在直线与m垂直C内不一定存在直线与m平行,但必存在直线与m垂直D内必存在直线与m平行,不一定存在直线与m垂直3 已知m是平面的一条斜线,点A,l为过点A的一条动直线,那么下列情形可能出现的是 ()Alm,l Blm,lClm,l Dlm,l4 正方体ABCDABCD中,E为AC的中点,则直线CE垂直于()AAC BBD CAD DAA二、填空题(每小题5分,共15分)5. 如图,BAC90,PC平面ABC,则在ABC,PAC的边所在的直线中:与PC垂直的直线有_;与AP垂直的直线有_6. 如图,PA圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的正投影,给出下列结论:AFPB;EFPB;AFBC;AE平面PBC.其中正确结论的序号是_7 已知平面,和直线m,给出条件:m;m;m;.当满足条件_时,有m.(填所选条件的序号)三、解答题(共22分)8 (10分)如图所示,在斜三棱柱A1B1C1ABC中,底面是等腰三角形,A1B1A1C1,侧面BB1C1C底面A1B1C1.(1)若D是BC的中点,求证:ADCC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AMMA1,求证:截面MBC1侧面BB1C1C.9 (12分)如图,在正方体ABCDA1B1C1D1中,E、F分别是CD、A1D1的中点(1)求证:AB1BF;(2)求证:AEBF;(3)棱CC1上是否存在点P,使BF平面AEP?若存在,确定点P的位置,若不存在,说明理由拓展训练(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1 已知l,m是不同的两条直线,是不重合的两个平面,则下列命题中为真命题的是()A若l,则lB若l,则lC若lm,m,则lD若l,m,则lm2 (2012浙江)已知矩形ABCD,AB1,BC,将ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中 ()A存在某个位置,使得直线AC与直线BD垂直B存在某个位置,使得直线AB与直线CD垂直C存在某个位置,使得直线AD与直线BC垂直D对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直3 已知三棱锥SABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA3,那么直线AB与平面SBC所成角的正弦值为 ()A. B. C. D.二、填空题(每小题5分,共15分)4 已知P为ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:PABC;PBAC;PCAB;ABBC.其中正确的个数是_5 在正四棱锥PABCD中,PAAB,M是BC的中点,G是PAD的重心,则在平面PAD中经过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 航空餐饮 高空享受美味餐旅
- 膀胱膀胱颈手术实战大揭秘
- 医患关系管理年度总结报告
- 区块链助力企业数字化转型的实践策略
- 《病原体的多样性与识别》课件
- 电力接地系统总结模版
- 《医学统计学在疾病研究中的应用》课件
- 区块链技术在金融审计中如何重塑透明度
- 健康科技与人性的碰撞-探讨医疗AI伦理设计的思考点
- 医学生临床技能培训的科技应用与展望
- 电厂烟囱外壁防腐工程项目施工方案
- 专业工程分包业主审批表
- 药剂科终止妊娠药品管理制度
- 除草剂分类和使用方法
- 合同制消防员绩效考核细则详解
- 中远集团养老保险工作管理程序
- 留守儿童帮扶记录表
- 变电站第二种工作票
- 煤矿机电运输专业质量标准化管理制度
- 机电一体化专业毕业论文43973
- 基于PLC的变频中央空调温度控制系统的毕业设计
评论
0/150
提交评论