



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的方程导学案编写: 张振华 审核:导学目标: 1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.初步了解用代数方法处理几何问题的思想自主梳理1圆的定义在平面内,到_的距离等于_的点的_叫做圆2确定一个圆最基本的要素是_和_3圆的标准方程(xa)2(yb)2r2 (r0),其中_为圆心,_为半径4圆的一般方程x2y2DxEyF0表示圆的充要条件是_,其中圆心为_,半径r_.5确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为:(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F,代入标准方程或一般方程6点与圆的位置关系点和圆的位置关系有三种圆的标准方程(xa)2(yb)2r2,点M(x0,y0),(1)点在圆上:(x0a)2(y0b)2_r2;(2)点在圆外:(x0a)2(y0b)2_r2;(3)点在圆内:(x0a)2(y0b)2_r2.自我检测1方程x2y24mx2y5m0表示圆时,m的取值范围为_2圆心在y轴上,半径为1,且过点(1,2)的圆的方程是_3点P(2,1)为圆(x1)2y225的弦AB的中点,则直线AB的方程是_4已知点(0,0)在圆:x2y2axay2a2a10外,则a的取值范围是_5过圆x2y24外一点P(4,2)作圆的切线,切点为A、B,则APB的外接圆方程为_探究点一求圆的方程例1求经过点A(2,4),且与直线l:x3y260相切于点B(8,6)的圆的方程变式迁移1根据下列条件,求圆的方程(1)与圆O:x2y24相外切于点P(1,),且半径为4的圆的方程;(2)圆心在原点且圆周被直线3x4y150分成12两部分的圆的方程探究点二圆的几何性质的应用例2已知圆x2y2x6ym0和直线x2y30交于P,Q两点,且OPOQ (O为坐标原点),求该圆的圆心坐标及半径变式迁移2如图,已知圆心坐标为(,1)的圆M与x轴及直线yx分别相切于A、B两点,另一圆N与圆M外切且与x轴及直线yx分别相切于C、D两点(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度探究点三与圆有关的最值问题例3已知实数x、y满足方程x2y24x10.(1)求yx的最大值和最小值;(2)求x2y2的最大值和最小值变式迁移3如果实数x,y满足方程(x3)2(y3)26,求的最大值与最小值1求圆的标准方程就是求出圆心的坐标与圆的半径,借助弦心距、弦、半径之间的关系计算可大大简化计算的过程与难度2点与圆的位置关系有三种情形:点在圆内、点在圆上、点在圆外,其判断方法是看点到圆心的距离d与圆半径r的关系dr时,点在圆外3本节主要的数学思想方法有:数形结合思想、方程思想课后练习一、填空题(每小题5分,共40分)1在圆x2y22x6y0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为_2方程x2y2ax2ay2a2a10表示圆,则a的取值范围是_3圆x2y22x4y10关于直线2axby20 (a、bR)对称,则ab的取值范围是_4已知点P(2,1)在圆C:x2y2ax2yb0上,点P关于直线xy10的对称点也在圆C上,则实数a,b的值分别为_和_5已知两点A(2,0),B(0,2),点C是圆x2y22x0上任意一点,则ABC面积的最小值为_6已知圆C的圆心是直线xy10与x轴的交点,且圆C与直线xy30相切,则圆C的方程为_7圆心在直线2x3y10上的圆与x轴交于A(1,0)、B(3,0)两点,则圆的方程为_8设直线axy30与圆(x1)2(y2)24相交于A、B两点,且弦AB的长为2,则a_.二、解答题9根据下列条件,求圆的方程:(1)经过A(6,5)、B(0,1)两点,并且圆心C在直线3x10y90上;(2)经过P(2,4)、Q(3,1)两点,并且在x轴上截得的弦长等于6.10已知点(x,y)在圆(x2)2(y3)21上(1)求xy的最大值和最小值;(2)求的最大值和最小值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 37009:2025 EN Conflict of interest in organizations - Guidance
- 2025年教师招聘之《小学教师招聘》题库必刷100题附答案详解【模拟题】
- 量子精密测量在地质勘探中的创新创业项目商业计划书
- 2025年教师招聘之《幼儿教师招聘》模拟题库及一套答案详解
- 教师招聘之《小学教师招聘》能力提升打印大全及答案详解(基础+提升)
- 2025年教师招聘之《小学教师招聘》考前冲刺测试卷附完整答案详解【夺冠】
- 教师招聘之《小学教师招聘》题库【全优】附答案详解
- 教师招聘之《幼儿教师招聘》模拟考试高能及答案详解【名校卷】
- 教师招聘之《幼儿教师招聘》练习题库含答案详解【研优卷】
- 教师招聘之《幼儿教师招聘》试题(得分题)及参考答案详解(轻巧夺冠)
- 急诊科建设与设备配置标准
- 小学武术社团教学计划
- 急性胃肠炎诊疗规范
- 汉字五千年解说词完整版内容
- 《解密分层教学》读书心得体会(读书心得体会30篇)
- 《锅炉安全技术规程》课件
- 化学检验员职业生涯规划书
- 妇产科课件-子宫内膜息肉临床诊疗路径(2022版)解读
- 厂房建设工程投标方案(技术方案)
- 《药棒穴位按摩》课件
- 全国职工数字化应用技术技能大赛理论练习试题附答案(二)
评论
0/150
提交评论