勾股定理公开课PPT课件.ppt_第1页
勾股定理公开课PPT课件.ppt_第2页
勾股定理公开课PPT课件.ppt_第3页
勾股定理公开课PPT课件.ppt_第4页
勾股定理公开课PPT课件.ppt_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 17 1勾股定理 1 2 勾股定理有着悠久的历史 几乎所有具有古代文化的民族和国家都对勾股定理有所了解 它来源于人们生产实践之中 对人类发展起着十分重要的作用 我国著名数学家华罗庚曾建议 发射 一种勾股定理的图形到宇宙中 如果宇宙有人的话 他们一定会认识这种语言的 这条建议得到许多科学家的赞同 3 同学们 在我们美丽的地球王国上 原始森林 参天古树带给我们神秘的遐想 绿树成荫 微风习习 给我们以美的享受 你知道吗 在古老的数学王国 有一种树木它很奇妙 生长速度大的惊人 它是什么呢 下面让我们带着这个疑问一同到数学王国去欣赏吧 勾股树 创设情境激发兴趣 4 活动2 探索勾股定理 A B C的面积有什么关系 SA SB SC 等腰直角三角形三边有什么关系 两直角边的平方和等于斜边的平方 数学家毕达哥拉斯的故事 5 A的面积 单位面积 B的面积 单位面积 C的面积 单位面积 图1 1 图1 2 9 16 25 16 36 52 图1 1 图1 2 sA sB sC 探究 你会求出下列图形的面积吗 那么对于一般的直角三角形是否也有这样的性质呢 6 A B C SA a2 SB b2 SC c2 a b c c2 a2 b2 7 命题1如果直角三角形的两条直角边长分别为a b 斜边长为c 那么a2 b2 c2 猜想 a b c 勾 股 弦 即 直角三角形两直角边的平方和等于斜边的平方 8 在准备好的方格纸上 分别画三个顶点都在格点上且两直角边分别为6和8 5和12 9和12的直角三角形 并测量出这三个直角三角形的斜边长 然后验证你的猜想 动手操作数学实验 15 13 10 225 100 169 225 169 100 9 4 3 2 1 a b 2 a b 2 a2 b2 2ab c2 2ab b C a 证法一 1 拿出准备好的四个全等的直角三角形 设直角三角形的两条直角边分别为a b 斜边c 你能用这四个直角三角形拼成一个正方形吗 拼一拼试试看 验证实验发现规律 10 赵爽指出 按弦图 又可以勾股相乘为朱实二 倍之为朱实四 以勾股之差自相乘为中黄实 加差实 亦成弦实 赵爽弦图 朱实 朱实 朱实 C 朱实 C2 2 ab a b 2 a2 b2 2 11 赵爽弦图 表现了我国古代人对数学的钻研精神和聪明才智 它是我国古代数学的骄傲 因此 这个图案被选为2002年在北京召开的国际数学家大会的会徽 取材于我国古代数学著作 勾股圆方图 在西方 一般认为这个定理是毕达哥拉斯发现的 所以人们称这个定理为毕达哥拉斯定理 12 大正方形的面积该怎样表示 a b 2 a2 b2 2ab c2 2ab 可得 a2 b2 c2 证法二 13 a2 b2 c2 a2 b2 a2 c2 毕达哥拉斯证法 证法3 14 a b b a a2 a2 b2 c2 a a b b c c c2 2 ab b2 c2 ab ab 加菲尔德的 总统 证法 证法4 15 你还想知道勾股定理的其它证法吗 请上网查询 你一定会有精彩的发现 若你再能写一点有关勾股定理的小文章 那就更漂亮了 16 定理 经过证明被确认为正确的命题叫做定理 勾股定理 如果直角三角形的两直角边长分别为 斜边为 那么 2 b2 c2 如图 在Rt ABC中 C 90 则 2 b2 c2 常用的勾股数 3 4 5 5 12 13 6 8 10 7 24 25 17 我国早在三千多年就知道了这个定理 人们把弯曲成直角的手臂的上半部分称为 勾 下半部分称为 股 我国古代学者把直角三角形较短的直角边称为 勾 较长的直角边称为 股 斜边称为 弦 因此就把这一定理称为勾股定理 辉煌发现 18 勾股定理的各种表达式 在Rt ABC中 C 90 A B C的对边分别为a b c 则 c2 a2 b2a2 c2 b2b2 c2 a2 c2 a2 b2 a2 c2 b2 b2 c2 a2 c a b 19 周髀算经 毕达哥拉斯 商高 数学史话 勾股圆方图 20 定理的历史及证明 公元前600年左右 古希腊的毕达哥拉斯学派发现勾股定理 命名为 毕达哥拉斯定理 百牛定理 而且给出了证明 古巴比仑人在公元前19世纪也发现此定理 定理从提出到现在的两千多年中 已经找到证明400多种 由鲁密斯搜集整理的 毕达哥拉斯 一书中就给出370种不同证法 公元前11世纪 周公与商高的对话 记录于公元前1世纪 周髀算经 中提出 勾三 股四 弦五 勾股定理 商高定理 周髀算经 中还记载了公元前六 七世纪的荣方与陈子的对话 再次提到勾股定理 陈子定理 21 2 在Rt ABC C 90 BC AC 3 4 AB 10 则AC BC 1 在RT ABC中 C 90 若a 4 b 3 则c 若c 13 b 5 则a 若c 17 a 8 则b 5 12 15 一填空题 8 6 22 3 等边三角形的边长为12 则它的高为 5 在直角三角形中 如果有两边为3 4 那么另一边为 5或 4 等腰直角 ABC中 斜边长为2 则直角边长为 23 二选择题 如果直角三角形的一个锐角为30度 斜边长是2 那么直角三角形的其它两边长是 A1 B1 3C1 D1 5 如图 在Rt ABC中 C 90 B 45 AC 1 则AB A2B1CD A C A B C 一个长方形的长是宽的2倍 其对角线的长是5 那么它的宽是 A B C D B 24 学以致用 1 求图中字母所代表的正方形的面积 25 想一想 小明妈妈买了一部29英寸 74厘米 的电视机 小明量了电视机的屏幕后 发现屏幕只有58厘米长和46厘米宽 他觉得一定是售货员搞错了 你同意他的想法吗 你能解释这是为什么吗 26 收获无处不在 我知道了 我感受了 我做了 勾股定理 数 形 c2 a2 b2 27 28 如图 一个高3米 宽4米的大门 需在相对角的顶点间加一个加固木条 则木条的长为 A 3米B 4米C 5米D 6米 C C B A 基础练习之出谋划策 29 要养成用数学的思维去解读世界的习惯 只有不断的思考 才会有新的发现 只有量的变化 才会有质的进步 其实数学在我们的生活中无处不在 只要你是个有心人 就一定会发现在我们的身边 我们的眼前 还有很多象 勾股定理 那样的知识等待我们去探索 等待我们去发现 教师寄语 30 本节课我们经历了怎样的探究过程 本节课我们学到了什么 学了本节课后我们有什么感想 梳理反思 从特殊 一般的探究过程 勾股定理割补法以形解数法 中国悠久的文化和伟大的古代文明 31 作业 通过查阅资料 了解勾股定理的文化背景 通过查阅资料 了解勾股定理的证明方法 32 再见 33 在西方人们认为勾股定理是毕达哥拉斯先发现的 并称之为 毕达哥拉斯定理 不过早在公元前1120年左右中国的商高就在对话中说到 故折矩 此为勾广三 股修四 经隅五 你可能认为这是最早的勾股定理 但是具调查在公元前1900年的一块巴比伦上午泥板中 记载了15组勾股数 所以古巴比伦人才是勾股定理最先的发现人 勾股定理究竟是谁先发现的 34 有关知识 勾广三 股修四 径隅五 在西方 一般认为这个定理是一个叫做毕达哥拉斯的人发现的 所以称这个定理为毕达哥拉斯定理 我国著名数学家华罗庚建议 发射一种勾股定理的图形 如果宇宙人是 文明人 那么他们一定会认识这种 语言 的 35 中国最早的一部数学著作 周髀算经 的开头 记载着一段周公向商高请教数学知识的对话 周公问 我听说您对数学非常精通 我想请教一下 天没有梯子可以上去 地也没法用尺子去一段一段丈量 那么怎样才能得到关于天地得到数据呢 商高回答说 数的产生来源于对方和圆这些形体饿认识 其中有一条原理 当直角三角形 矩 得到的一条直角边 勾 等于3 另一条直角边 股 等于4的时候 那么它的斜边 弦 就必定是5 这个原理是大禹在治水的时候就总结出来的呵 勾股定理的来历 36 毕达哥拉斯出生于萨摩斯岛 自幼聪明好学 曾在名师门下学习几何 自然学和哲学 后来来到巴比伦 印度和埃及 吸收了阿拉伯文明和印度文明甚至中国文明的丰富营养 大约在公元前530年 又返回萨摩斯岛 后来又迁居意大利的克罗通 创建了自己的学术 毕达哥拉斯学术认为数最崇高 最神秘 他们所讲的是整数 可惜 朝气蓬勃的毕达哥拉斯到了晚年不仅学术保守 还反对新生事物 最后死与非命 毕达哥拉斯简介 37 勾股定理史话 38 商高是公元前十一世纪的中国人 当时中国的朝代是西周 是奴隶社会时期 在中国古代大约是战国时期西汉的数学著作 周髀算经 中记录着商高同周公的一段对话 商高说 故折矩 勾广三 股修四 经隅五 什么是 勾 股 呢 在中国古代 人们把弯曲成直角的手臂的上半部分称为 勾 下半部分称为 股 商高那段话的意思就是说 当直角三角形的两条直角边分别为3 短边 和4 长边 时 径隅 就是弦 则为5 以后人们就简单地把这个事实说成 勾三股四弦五 由于勾股定理的内容最早见于商高的话中 所以人们就把这个定理叫作 商高定理 商高定理 39 毕达格拉斯定理 毕达哥拉斯有次应邀参加一位富有政要的餐会 这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖 由于大餐迟迟不上桌 这些饥肠辘辘的贵宾颇有怨言 但这位善于观察和理解的数学家却凝视脚下这些排列规则 美丽的方形磁砖 但毕达哥拉斯不只是欣赏磁砖的美丽 而是想到它们和 数 之间的关系 于是拿了画笔并且蹲在地板上 选了一块磁砖以它的对角线AB为边画一个正方形 他发现这个正方形面积恰好等于两块磁砖的面积和 他很好奇 于是再以两块磁砖拼成的矩形之对角线作另一个正方形 他发现这个正方形之面积等于5块磁砖的面积 也就是以两股为边作正方形面积之和 至此毕达哥拉斯作了大胆的假设 任何直角三角形 其斜边的平方恰好等于另两边平方之和 那一顿饭 这位古希腊数学大师 视线都一直没有离开地面 40 希腊的著明数学家毕达格拉斯发现了这个定理 因此世界上许多国家都称勾股定理为 毕达格拉斯 定理 为了庆祝这一定理的发现 毕达哥拉斯学派杀了一百头牛酬谢供奉神灵 因此这个定理又有人叫做 百牛定理 百牛定理 41 一个周末的傍晚 伽菲尔德突然发现附近的一个小石凳上 有两个小孩正在聚精会神地谈论着什么 只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形 于是伽菲尔德便问他们在干什么 只见那个小男孩头也不抬地说 请问先生 如果直角三角形的两条直角边分别为3和4 那么斜边长为多少呢 伽菲尔德答到 是5呀 小男孩又问道 如果两条直角边分别为5和7 那么这个直角三角形的斜边长又是多少 伽菲尔德不加思索地回答到 那斜边的平方一定等于5的平方加上7的平方 小男孩又说道 先生 你

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论