固体物理习题及解答.doc_第1页
固体物理习题及解答.doc_第2页
固体物理习题及解答.doc_第3页
固体物理习题及解答.doc_第4页
固体物理习题及解答.doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、填空题1. 晶格常数为a的立方晶系 (hkl晶面族的晶面间距为 ;该(hkl晶面族的倒格子矢量为 。2. 晶体结构可看成是将 基元 按相同的方式放置在具有三维平移周期性的 晶格 的每个格点构成。pKX2qx0n623. 晶体结构按晶胞形状对称性可划分为 7 大晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。pKX2qx0n624. 体心立方 , 与正格子晶面 , 其面间距为 .pKX2qx0n6211. 铁磁相变属于典型的 二级 相变,在居里温度附近,自由能连续变化,但其 一阶导数比热) 不连续。pKX2qx0n6212. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进一步划分为 230 个空间群。 13等径圆球的最密堆积方式有 六方密堆hcp) 和 面心立方密堆fcc) 两种方式,两者的空间占据率皆为74%。pKX2qx0n6214. 面心立方fcc)晶格的倒格子为 体心立方bcc) 晶格; 面心立方fcc)晶格的第一布里渊区为 截角八面体 。 15. 结构因子Shkl 反映一个晶胞对于hkl)布拉格衍射的衍射能力大小; 原子形状因子 反映一个原子对于hkl)布拉格衍射的衍射能力大小。pKX2qx0n6216. 布里渊反射 。pKX2qx0n6217. 根据布拉格方程,能满足衍射条件的入射x射线的波长不得大于 2d ;入射x射线波长变大将导致衍射角 变大 。pKX2qx0n6218. 晶体结构中由原子或原子集团组成的最小重复单元称为 基元 ;由晶格点阵)的三个平移基矢围成的平行六面体称为 晶胞 。 19. 六方密堆结构的原子密排面为 001) 晶面;垂直于 001 晶向按ABAB重复方式排列。最大配位数为12。pKX2qx0n6220. 简立方格子的倒格子为 简立方 格子, 体心立方格子的倒格子为 面心立方 格子。21. 对于体积为V,并具有N个电子的金属, 其费M波矢为 ,费M能量为 。22. 超导体最为根本的物理特征是具有 迈斯纳Meisser)效应 。 也就是说超导体除了具有完全导电性外,还具有 完全抗磁性 。23. 碳化硅SiC)是一种常见的半导体材料,当产生晶格振动时,会形成 3 支声学支格波和 3 支光学支格波。24. 晶体中电子的速度与波矢空间中能带的 一阶导数斜率) 成正比;有效质量与波矢空间中能带的 二阶导数 , 其面间距为 .pKX2qx0n6229.各向同性磁介质的相对磁导率与磁化率的关系为,其中磁化率的定义式为 。30. 体心立方元素晶体, 111方向上的结晶学周期是 ; 实际周期为 /2 。31. 面心立方元素晶体中最小的晶列周期是 ; 该晶列在 111) 晶面内。32. 氯化铯结构对应的是 立方 布拉菲格子,其配位数是 8 。33. 碳化硅SiC晶体产生晶格振动时,总共会形成 6 支格波; 其中声学支和光学支格波各为 3 支。34. 钛酸锶SrTiO3晶体产生晶格振动时,会形成 15 支格波,其中声学支和光学支格波各为 3和12 支。35. 当X射线照射在一个晶体时,产生衍射的必要条件是 满足Brag方程 ,而产生衍射的充要条件是 该衍射的结构因子不为零 。36. X射线的衍射方向主要取决于 晶胞的形状和大小 , 而衍射强度主要取决于晶胞内的原子种类、数目和分布 。37 一级相变 在相变点处有潜热,体系的自由能不连续变化; 二级相变 在相变点处无潜热,体系的自由能连续变化,但其一阶导数比热)不连续变化。38.金刚石晶体的结合类型是典型的 共价结合 晶体,每个原子具有正四面体构型的 sp3 原子杂化轨道.39. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度 不为 零, 电子波矢的末端处在 布里渊区 边界上.40. 两种不同金属接触后, 费M能级高的带 正 电.对导电有贡献的是 费M面附近 的电子.41. 具有平移对称性的晶体结构不可能具有 5重 对称轴,并且晶体结构的对称轴最高为 6重 对称轴。42. 晶体结构按点对称操作可划分为 32个 点群,结合平移对称操作可进一步划分为 230个 空间群。 43 等径圆球的最密堆积方式有六方密堆hcp)和 面心立方密堆fcc)两种方式,两者的空间占据率皆为 74% 。44. 面心立方fcc)结构具有最大原子面密度的为 111) 晶面;六方密堆hcp)结构具有最大原子面密度的为 001) 晶面。45立方晶系具有简单立方 和 面心立方(fcc 三种布拉维晶格。46. 面心立方fcc)晶格的倒格子为 体心立方bcc) 晶格; 面心立方fcc)晶格的第一布里渊区为 截角八面体 。 47. 体心立方bcc)晶格的倒格子为 面心立方fcc) 晶格; 体心立方bcc)晶格的第一布里渊区为 正菱形十二面体 。 48. 布里渊反射 的波的波矢。49金刚石晶体具有 面心立方晶体具有 面心立方fcc) 晶格,每个晶胞包含 4个 NaCl基元。 52. 对于体积为V,并具有N个电子的金属, 其费M波矢为 ,费M能量为 。53. 对于体积为V,并具有N个电子的金属, 其费M波矢为 ,费M速度为 。54. 超导体最为根本的物理特征是具有 迈斯纳Meisser)效应 。 也就是说超导体除了具有完全导电性外,还具有 完全抗磁性 。55. 金刚石结构可看成是由两套 fcc 晶格沿体对角线平移 1/4 体对角线长度相互穿套而成的复式格子。56. 金刚石结构的晶胞包含 8 个原子,其基元由位于 原子坐标的两个原子构成。57. 氯化钠结构的晶胞包含 8 个离子,其基元由位于 的氯离子构成。pKX2qx0n6258 一级相变 在相变点处有潜热,体系的自由能不连续变化; 二级相变 在相变点处无潜热,体系的自由能连续变化,但其一阶导数比热)不连续变化。59. 晶格振动的爱因斯坦模型假定任何振动模式都具有 相同 的振动频率,德拜模型则假定振动频率与 波矢 成正比。pKX2qx0n6260. 晶格振动的爱因斯坦模型假定任何振动模式都具有 相同 的振动频率,能近似描述 光频支 的贡献。pKX2qx0n6261. 晶格振动的德拜模型假定振动频率与 波矢 成正比,能较好描述 声频支 的贡献。62. 根据经典的能量均分定律,固体晶格振动热容在高温时趋近 3R ,与温度无关;低温时偏离增大,与温度的 三次方 成正比。pKX2qx0n6263. 由于电磁感应原理,所有的物质都具有 逆磁性 ;其磁化率为很小的 负值 ,并且与温度几乎无关。pKX2qx0n6264. 铁磁性物质中原子不仅具有磁矩,同时磁矩之间还具有 交换相互作用 , 因此在外磁场为零时,具有 自发磁化 。65. 根据费M分布函数 ,在一定温度下,电子在费M能级处的占据概率为 1/2 。66. 原子磁矩在外磁场作用下的转向表现为 郎之万 顺磁性;导电电子的自旋磁矩在外磁场作用下的转向表现为 泡利 顺磁性;67. 一定温度下,铁磁性物质的特征物理性质由 磁滞回线 表征。高于居里温度时转变为顺磁性,并遵从 居里外斯 定律。pKX2qx0n6268. 铁磁性物质高于居里温度时转变为顺磁性,并遵从 居里外斯 定律,居里温度与 交换相互作用强度 成正比。69. 第二类超导体的相干长度 小于 磁场侵入长度,因此超导态和正常态的界面自由能为 负 值,可形成涡旋混合态。pKX2qx0n6270. 晶体衍射的必要条件是满足 Brag 方程,但由于系统消光,其中 结构因子为零 的衍射不能被观察到。二、论述题1. 几何结构因子是如何表示的,它的物理意义如何?与哪些因素有关?答:结构因子Fhkl反映一个晶胞对于衍射的衍射能力大小; 其大小取决于: 1)晶胞内原子种类、数目和分布 2)衍射方向: 2. 根据结合力的不同,晶体可分为几种类型?其各自的结合力分别是什么?答: 1)离子晶体正负离子间静电库仑力 2)分子晶体范德华力 3)金属晶体电子云和原子实之间的静电库仑力 4)共价晶体共价键 5)氢键晶体氢键作用3. 描述超导体的基本物理特征和重要物理参数,并从经典电磁理论说明完美导体与超导体的根本区别。答:超导体具有如下四大基本物理特征1)零电阻完全导体 2)Meissner 效应完全抗磁性 3)Josephson 效应 4)磁通量子化 0=(h/2e pKX2qx0n62超导体具有如下个重要物理参数:临界温度TC 、临界磁场HC、临界电流密度JC、相干长度x、侵入长度l、超导能隙D pKX2qx0n62完美导体不具备完全抗磁性,而超导体具有完全抗磁性,此为两者间最根本的区别。根据法拉第电磁感应定律:,若将超导体仅仅视为电阻率为零的完美导体,内部电场强度必为零,其旋度必为零,则磁场强度的时间变化率亦必为零。因此完美导体内部的磁场强度保持不变,根据外加磁场可为零或一定值;而对于超导体,无论外加磁场有无,在超导态其内部磁场强度始终保持为零,具有完全抗磁性,其磁化率为1。pKX2qx0n624. 试从热力学的角度,说明第一类超导体和第二类超导体的基本区别。答:超导体单位面积界面自由能为: 上式中x为超导相干长度,l为磁场侵入长度。对于第一类超导体,相干长度x大于磁场侵入长度l,界面自由能为大于零的正值, 不利于形成正常态和超导态共存的混合态,磁束量子无法穿透第一类超导体,因此第一类超导体只有一个临界磁场,小于临界磁场为超导态,大于临界磁场为正常态。 pKX2qx0n62对于第二类超导体,相干长度x小于磁场侵入长度l,界面自由能为小于零的负值,磁束量子可以穿透第二类超导体,有利于形成正常态和超导态共存的混合态,因此第一类超导体具有上下两个临界磁场,小于下临界磁场为超导态,大于上临界磁场为正常态,在上下两个临界磁场之间为正常态和超导态共存的混合态。 pKX2qx0n62第一类超导体的临界磁场一般较小,实际应用受限。第二类超导体的上临界磁场可以延伸至很大值,通过提高磁束量子的钉扎效应就会具有很大的实际应用价值。pKX2qx0n625.在下图中,试求: 1)晶列ED,FD和OF的晶列指数; 2)晶面AGE和FGIH的密勒指数。答:1)ED- FD- OF- 2) AGE- FGIH- 中的晶面ABC的密勒指数,B、C均为立方体的面心。 图e中 晶面ABC密勒指数7. 在固体物理中为什么要引入“倒格子空间”的概念?答:波的最主要的指标是波矢K,波矢K的方向就是波传播的方向,波矢的模值与波长成反比,波矢的量纲是1/m。讨论晶体与波的相互作用是固体物理的基本问题之一。一般情况下晶体的周期性、对称性等均在正空间描述,即在m的量纲中描述。为了便于讨论晶体与波的相互作用,必须把二者放到同一个空间,同一坐标系中来。我们的选择是把晶体变换到量纲是1/m的空间即倒空间来,即把正空间晶体 “映射”到倒空间,所以需引入倒空间。pKX2qx0n62引入“倒空间”的概念后,可以将晶面族特征用一个矢量综合体现出来,矢量的方向代表晶面的法向,矢量的模值比例于晶面的面间距。用数学方法将晶体结构中不同位向的晶面族转化成了倒格子空间的倒格点,每个格点都表示了晶体中一族晶面的特征。pKX2qx0n628. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的?答:波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为 , 而波矢空间的基矢分别为 , N1、N2、N3分别是沿正格子基矢 方向晶体的原胞数目. pKX2qx0n62倒格空间中一个倒格点对应的体积为 波矢空间中一个波矢点对应的体积为 即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的. pKX2qx0n629. 简述晶向指数和晶面指数的定义及确定步骤。答:晶向指数表示晶格中某平移矢量的方向,一般记为uvw, 其中uvw为某平移矢量在三个晶轴上投影分量的最小整数比。确定步骤如下: pKX2qx0n621)建立坐标系:以任一格点为坐标原点,以点阵基本平移矢量为坐标轴和坐标轴上的单位矢量;2)通过坐标原点引一直线,使其平行于待标志的晶向;3)选取该直线上任一点的坐标;4)将三个坐标值按比例化为最小整数,即为所求的晶向指数uvw。 在结晶学中一般用(hkl来表示一组相互平行且等间距的晶面,hkl为该晶面在三个晶轴上截距倒数的最小整数比,(hkl称为晶面指数或M勒指数。确定步骤如下: pKX2qx0n62 1)建立坐标系:以任一格点为坐标原点,以点阵基本平移矢量为坐标轴和坐标轴上的单位矢量; 2)求出待标志晶面在三个坐标轴上的截距,截距大小分别以三个基矢长度为单位; 3)取三个截距值的倒数,将其按比例化为互质的最小整数比。10. 简述倒易点阵的定义以及特点。答:倒易点阵是一种由晶体点阵按一定规则变换过来的虚点阵,对于解释X射线和电子衍射极为有用。其定义如下: 若为某晶体点阵的基本平移矢量,则与之对应的倒易点阵基本平移矢量为: 倒易点阵具有如下特点:1) ; 2)正点阵和倒易点阵一一对应,且互为倒易;正点阵的晶胞体积和倒易点阵的晶胞体积互为倒数 3)倒易点阵中的一个点代表了正点阵中的一个同指数晶面,此晶面的法线就是该倒易点矢量,该倒易点矢量的模等于对应晶面间距dhkl的倒数。pKX2qx0n62 11. 声子有哪些性质?答: 声子的性质有: 声子是量子谐振子的能量量子;3NS格波与3NS个量子谐振振子一一对应;声子为玻色子;平衡态时声子是非定域的;声子是准粒子,遵循能量守恒 定律和准动量选择定则;非热平衡态,声子扩散伴随着热量传导;平均声子数。12. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?答:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加. pKX2qx0n62简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N.pKX2qx0n6213. 长光学支格波与长声学支格波本质上有何差别?答:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子晶体不存在光学支格波.pKX2qx0n6214.简述杜隆-珀替定律。答:在高温条件下,晶体中的原子运动按照经典物理的力学和统计方法来描述,晶体有N个原胞,每个原胞有r个原子,故有3rN个简正模式,其内能为 ,定容比热为,即高温晶格比热是一常量,与温度无关,与物质元素也无关这个就是杜隆-珀替定律。pKX2qx0n6215.金属的比热包括几部分,分别和温度有什麽联系?答:金属的比热有晶格震动的贡献和电子气的贡献两个部分,在低温下晶格振动比热按德拜T3规律变化,电子气的贡献和温度成正比。pKX2qx0n62三、证明题和计算题1. 某物质具有具有简单立方晶格,其晶格常数a=3.000, 试确定该物质的粉末X射线衍射图中最初三条衍射线的Bragg角2q)和相应的晶面间距和衍射指数。pKX2qx0n62已知入射X射线波长lKa=1.540 )解: 根据Bragg方程: 若q取最低值,则dHKL应为最大值根据立方晶系的晶面间距公式: 若dHKL取最大值,则H2+K2+L2应为最小值,因此最初三条衍射线的Bragg角 (100 d100=3 2q=29.7 2 (110 d110=2.12 2q=42.6 3 (111 d111=1.73 2q=52.9 2.已知-Fe属立方晶系,点阵参数a=2.866。如用CrKX射线=2.291)照射,试求110)及211)晶面可发生衍射的掠射角q。pKX2qx0n62解:根据立方晶系的晶面间距公式: 又根据Bragg方程: 3铜靶发射=0.154nm的X射线入射铝单晶面心立方结构),如铝111)面一级布拉格反射角=19.2,试据此计算铝111)面族的面间距d与铝的晶格常数a。pKX2qx0n62解: 由布拉格定律:2dsin=n,可知:,有题目可知:n=1,=0.154nm,=19.2所以:铝111)面族的面间距d=0.234nm,铝晶面衍射强度的影响。pKX2qx0n62体心立方晶格包含二个同类原子,其原子坐标分别为0,0,0)和1/2,1/2,1/2),代入上式可得: 可见当H+K+L为偶数时,FHKL=2f;pKX2qx0n62当H+K+L为奇数时,FHKL=0;因此对于体心立方晶格只出现H+K+L为偶数的衍射,H+K+L为奇数的衍射系统消光。 5. 说明原子散射因数、结构因数F的物理意义。并据此推导面心立方晶格的系统消光规律。面心立方晶格包含四个同类原子,其原子坐标分别为0,0,0)和1/2,1/2,0),1/2,0,1/2),0,1/2,1/2),代入上式可得:pKX2qx0n62当H, K, L同为奇数或同为偶数时, FHKL=4f当H, K, L奇偶混杂时,FHKL=0即面心立方晶格只出现同为奇数或同为偶数晶面的衍射。 6. 利用德拜dw2 所以一维单式晶格的格波密度函数:g(w 由德拜模型可知,只有w的格波才能被激发,已激发的格波数为; A 在极低温度下,一维单式格子主要是长声波激发,对满足晶面族的晶面间距。8.证明立方晶系(hkl晶面族的晶面间距证:对于正交晶系,晶胞基矢 相互垂直,但晶格常数.设沿晶轴的单位矢量分别为 ,则正格子基矢为: 倒格子基矢为: 与晶面族正交的倒格矢为: 由晶面间距与倒格矢的关系式: 得: 9. 试推导自旋量子数S=1/2原子体系顺磁性的居里定律。证: S=1/2 则ms=+1/2, -1/2, g=2 则原子磁矩为: 原子磁矩在磁场方向的分量为: 磁场中的原子能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论