




免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年湖北省随州市高一(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的1设集合a=x|1x2,b=x|x24x0,xr,则a(rb)=()a1,2b0,2c1,4d0,42f(x)=,则f(f(1)等于()a2b2c4d43下列函数中,既是奇函数又以为周期,且在(0,)上单调递增的是()ay=|tan|by=sinxcy=tanxdcosx4若0,且sin+cos=,则cossin的值是()abcd5若向量|=,|=2,(),则、的夹角是()abcd6设a,b,c,dr且ab,cd,且下列结论中正确的是()aa+cb+dbacbdcacbdd7已知过点a(2,m)和b(m,4)的直线与直线2x+y1=0平行,则m的值为()a0b8c2d108已知ab0,bc0,则直线ax+by=c通过()a第一、二、三象限b第一、二、四象限c第一、三、四象限d第二、三、四象限9在abc中,若c=2acosb,则abc的形状为()a直角三角形b等腰三角形c等边三角形d锐角三角形10已知数an满a1=0,an+1=an+2n,那a2016的值是()a20142015b20152016c20142016d2015201511已知点a(2,3),b(3,2)若直线l过点p(1,1)且与线段ab相交,则直线l的斜率k的取值范围是()abck2或dk212已知过点p(4,1)的直线分别交x,y坐标轴于a,b两点,o为坐标原点,若abo的面积为8,则这样的直线有()a4b3c2d1二、填空题(共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。)13在abc中若b=5,sina=,则a=14若正数x,y满足+=5,则3x+4y的最小值是15方程|x|+|y|=1所表示的图形的面积为16若方程=kx有两个实数根,则实数k的取值范围是三、解答题:本大题共6小题,满分70分。解答应写出文字说明,证明过程或演算步骤17已知=(sinx,2),=(2cosx,cos2x),函数f(x)=,(1)求函数f(x)的值域;(2)在abc中,角a,b,c和边a,b,c满足a=2,f(a)=2,sinb=2sinc,求边c18设直线l的方程为(a+1)x+y+2a=0(ar)(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围19成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列bn中的b3、b4、b5()求数列bn的通项公式;()数列bn的前n项和为sn,求证:数列sn+是等比数列20已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1只还需另投入16美元设苹果公司一年内共生产该款iphone手机x万只并全部销售完,每万只的销售收入为r(x)万美元,且r(x)=(1)写出年利润w(万元)关于年产量x(万只)的函数解析式;(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润21已知等差数列an中,公差d0,其前n项和为sn,且满足a2a4=45,a1+a5=14()求数列an的通项公式及其前n项和sn;()令bn=(nn*),若数列cn满足c1=,cn+1cn=bn(nn*)求数列cn的通项公式cn;()求f(n)=(nn*)的最小值22已知圆c经过点a(2,0),b(0,2),且圆心c在直线y=x上,又直线l:y=kx+1与圆c相交于p、q两点(1)求圆c的方程;(2)若=2,求实数k的值;(3)过点(0,4)作动直线m交圆c于e,f两点试问:在以ef为直径的所有圆中,是否存在这样的圆p,使得圆p经过点m(2,0)?若存在,求出圆p的方程;若不存在,请说明理由2015-2016学年湖北省随州市高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的1设集合a=x|1x2,b=x|x24x0,xr,则a(rb)=()a1,2b0,2c1,4d0,4【考点】交、并、补集的混合运算【分析】利用不等式的性质,结合题设条件先求出b,再求a(crb)的值【解答】解:集合a=x|1x2,b=x|x24x0,xr=x4,或x0,b=x|0x4,a(crb)=x|0x2故选b2f(x)=,则f(f(1)等于()a2b2c4d4【考点】对数的运算性质;函数的值【分析】根据分段函数的定义域,先求f(1)的值,进而根据f(1)的值,再求f(f(1)【解答】解:由分段函数知,f(1)=,所以f(f(1)=f(2)=3+log22=3+1=4故选d3下列函数中,既是奇函数又以为周期,且在(0,)上单调递增的是()ay=|tan|by=sinxcy=tanxdcosx【考点】函数单调性的判断与证明【分析】分别根据三角函数的周期性单调性和奇偶性即可判断【解答】解:对于a:y=|tan|,周期为2,且为偶函数,对于b:y=sinx,周期为2,对于c:y=tanx,周期为,在(0,)上单调递增,对于d:y=cosx,周期为2,且为偶函数,故选:c4若0,且sin+cos=,则cossin的值是()abcd【考点】同角三角函数基本关系的运用【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出2sincos的值,再利用完全平方公式及同角三角函数间基本关系化简即可求出cossin的值【解答】解:把sin+cos=,两边平方得:(sin+cos)2=1+2sincos=,即2sincos=,0,sin0,cos0,即cossin0,(cossin)2=12sincos=,则cossin=,故选:d5若向量|=,|=2,(),则、的夹角是()abcd【考点】平面向量数量积的运算【分析】利用数量积的定义、向量垂直与数量积的关系即可得出【解答】解:向量|=,|=2,(),设向量与的夹角是=22cos=0,cos=0,=故选:d6设a,b,c,dr且ab,cd,且下列结论中正确的是()aa+cb+dbacbdcacbdd【考点】不等关系与不等式【分析】a、设a,b,c,dr且ab,cd,根据同向不等式的可加性知,a正确;b、c、d三个选项分别令a、b、c、d取特殊值,可知它们不正确【解答】解:a、设a,b,c,dr且ab,cd,根据同向不等式的可加性知,a正确;b、令a=2,b=0,c=0,d=3,可知b、c不正确;d、令a=1,b=2,c=1,d=2,可知d不正确故选a7已知过点a(2,m)和b(m,4)的直线与直线2x+y1=0平行,则m的值为()a0b8c2d10【考点】斜率的计算公式【分析】因为过点a(2,m)和b(m,4)的直线与直线2x+y1=0平行,所以,两直线的斜率相等【解答】解:直线2x+y1=0的斜率等于2,过点a(2,m)和b(m,4)的直线的斜率k也是2,=2,解得,故选 b8已知ab0,bc0,则直线ax+by=c通过()a第一、二、三象限b第一、二、四象限c第一、三、四象限d第二、三、四象限【考点】直线的一般式方程【分析】利用直线斜率与截距的意义即可得出【解答】解:直线ax+by=c化为ab0,bc0,0,0,直线通过第一、二、四象限故选:b9在abc中,若c=2acosb,则abc的形状为()a直角三角形b等腰三角形c等边三角形d锐角三角形【考点】正弦定理【分析】首先利用余弦定理代入已知条件,再根据化简的最终形式,判断三角形的形状【解答】解:利用余弦定理:则:c=2acosb=解得:a=b所以:abc的形状为等腰三角形故选:b10已知数an满a1=0,an+1=an+2n,那a2016的值是()a20142015b20152016c20142016d20152015【考点】数列递推式【分析】通过an+1=an+2n可知anan1=2(n1),an1an2=2(n2),an2an3=2(n3),a2a1=2,累加计算,进而可得结论【解答】解:an+1=an+2n,an+1an=2n,anan1=2(n1),an1an2=2(n2),an2an3=2(n3),a2a1=2,累加得:ana1=21+2+3+(n1)=2=n(n1),又a1=0,an=n(n1),a2016=2016=20152016,故选:b11已知点a(2,3),b(3,2)若直线l过点p(1,1)且与线段ab相交,则直线l的斜率k的取值范围是()abck2或dk2【考点】直线的斜率【分析】首先求出直线pa、pb的斜率,然后结合图象即可写出答案【解答】解:直线pa的斜率k=2,直线pb的斜率k=,结合图象可得直线l的斜率k的取值范围是k2或k故选c12已知过点p(4,1)的直线分别交x,y坐标轴于a,b两点,o为坐标原点,若abo的面积为8,则这样的直线有()a4b3c2d1【考点】直线的截距式方程【分析】由题意可设直线的方程为: +=1,可得+=1,s=|a|b|=8,联立消去b可得a2=16(a4),由一元二次方程根的个数可判【解答】解:由题意可设直线的方程为: +=1,直线过点p(4,1),+=1,abo的面积s=|a|b|=8,联立消去b可得a2=16(a4),整理可得a216a+64=0,或a2+16a64=0,可判上面的方程分别有1解和2解,故这样的直线有3条故选:b二、填空题(共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。)13在abc中若b=5,sina=,则a=【考点】正弦定理【分析】直接利用正弦定理,求出a 的值即可【解答】解:在abc中若b=5,sina=,所以,a=故答案为:14若正数x,y满足+=5,则3x+4y的最小值是5【考点】基本不等式【分析】由条件可得1=(+),运用乘1法,可得3x+4y=(3x+4y)(+)=(9+4+),运用基本不等式,可得最小值,注意等号成立的条件【解答】解:由正数x,y满足+=5,可得1=(+),3x+4y=(3x+4y)1=(3x+4y)(+)=(9+4+)(13+2)=(13+12)=5当且仅当=,即x=2y,又+=5,解得x=1,y=,3x+4y取得最小值5故答案为:515方程|x|+|y|=1所表示的图形的面积为2【考点】二元一次不等式(组)与平面区域【分析】利用绝对值的意义,通过分段讨论,将绝对值符号去掉,将方程转化为几个不等式组,画出不等式组表示的平面区域,判断出区域的形状,求出面积【解答】解:方程|x|+|y|=1等价于或画出可行域方程|x|+|y|=1所表示的图形是一个正方形,其边长为故区域的面积为2故答案为:216若方程=kx有两个实数根,则实数k的取值范围是0k1或1k2【考点】根的存在性及根的个数判断【分析】先画出函数y=kx,y=的图象,利用方程有两个实根函数y=kx,y=的图象有两个交点,即可求出【解答】解:画出函数y=kx,y=的图象,由图象可以看出:当0k1时,函数y=kx,y=的图象有两个交点,即方程有两个实根;当k=1时,函数y=kx,y=的图象有1个交点,即方程有1个实根;当1k2时,函数y=kx,y=的图象有两个交点,即方程有两个实根因此实数k的取值范围是0k1或1k2故答案为:0k1或1k2三、解答题:本大题共6小题,满分70分。解答应写出文字说明,证明过程或演算步骤17已知=(sinx,2),=(2cosx,cos2x),函数f(x)=,(1)求函数f(x)的值域;(2)在abc中,角a,b,c和边a,b,c满足a=2,f(a)=2,sinb=2sinc,求边c【考点】平面向量数量积的运算;三角函数中的恒等变换应用;正弦函数的图象【分析】(1)根据向量的坐标运算以及二倍角公式,化简求出f(x),根据三角函数的性质求出值域;(2)先求出a的大小,再根据正弦余弦定理即可求出【解答】解:(1)=(sinx,2),=(2cosx,cos2x),f(x)=2sinxcosx+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,1sin(2x+)1,12sin(2x+)+13,函数f(x)的值域为1,3;(2)f(a)=2,2sin(2a+)+1=2,sin(2a+)=2a+=2k+,或2a+=2k+,kz,a=k,(舍去),a=k+,kz,0a,a=,sinb=2sinc,由正弦定理可得b=2c,a=2,由余弦定理可得,a2=b2+c22bccosa,3c2=4,解得c=18设直线l的方程为(a+1)x+y+2a=0(ar)(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围【考点】直线的截距式方程;确定直线位置的几何要素;过两条直线交点的直线系方程【分析】(1)先求出直线l在两坐标轴上的截距,再利用 l在两坐标轴上的截距相等 建立方程,解方程求出a的值,从而得到所求的直线l方程(2)把直线l的方程可化为 y=(a+1)x+a2,由题意得,解不等式组求得a的范围【解答】解:(1)令x=0,得y=a2 令y=0,得(a1)l在两坐标轴上的截距相等,解之,得a=2或a=0所求的直线l方程为3x+y=0或x+y+2=0(2)直线l的方程可化为 y=(a+1)x+a2l不过第二象限,a1a的取值范围为(,119成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列bn中的b3、b4、b5()求数列bn的通项公式;()数列bn的前n项和为sn,求证:数列sn+是等比数列【考点】等比关系的确定;等比数列的通项公式;等比数列的前n项和【分析】(i)利用成等差数列的三个正数的和等于15可设三个数分别为5d,5,5+d,代入等比数列中可求d,进一步可求数列bn的通项公式(ii)根据(i)及等比数列的前 n项和公式可求sn,要证数列sn+是等比数列即可【解答】解:(i)设成等差数列的三个正数分别为ad,a,a+d依题意,得ad+a+a+d=15,解得a=5所以bn中的依次为7d,10,18+d依题意,有(7d)(18+d)=100,解得d=2或d=13(舍去)故bn的第3项为5,公比为2由b3=b122,即5=4b1,解得所以bn是以首项,2为公比的等比数列,通项公式为(ii)数列bn的前和即,所以,因此是以为首项,公比为2的等比数列20已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1只还需另投入16美元设苹果公司一年内共生产该款iphone手机x万只并全部销售完,每万只的销售收入为r(x)万美元,且r(x)=(1)写出年利润w(万元)关于年产量x(万只)的函数解析式;(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润【考点】函数与方程的综合运用【分析】(1)利用利润等于收入减去成本,可得分段函数解析式;(2)分段求出函数的最大值,比较可得结论【解答】解:(1)利用利润等于收入减去成本,可得当0x40时,w=xr(x)(16x+40)=6x2+384x40;当x40时,w=xr(x)(16x+40)=w=;(2)当0x40时,w=6x2+384x40=6(x32)2+6104,x=32时,wmax=w(32)=6104;当x40时,w=2+7360,当且仅当,即x=50时,wmax=w(50)=576061045760x=32时,w的最大值为6104万美元21已知等差数列an中,公差d0,其前n项和为sn,且满足a2a4=45,a1+a5=14()求数列an的通项公式及其前n项和sn;()令bn=(nn*),若数列cn满足c1=,cn+1cn=bn(nn*)求数列cn的通项公式cn;()求f(n)=(nn*)的最小值【考点】数列的求和;等差数列的通项公式【分析】()由等差数列的性质可知,a1+a5=a2+a4,结合d0,a2a4=45可求a2,a4,进而可求公差d,即可求解()由(i )可求bn=,从而可得c1=,cn+1cn=,利用累加法可求()结合(i)(ii)可求f(n)=+,结合基本不等式可求f(n)的最小值【解答】(本小题10分)解:()因为数列an是等差数列,所以a1+a5=a2+a4=14因为d0,a2a4=45所以解方程组可得,a2=5,a4=9所以a1=3,d=2所以an=2n+1因为sn=na1+n(n1)d,所以sn=n2+2n数列an的通项公式an=2n+1,前n项和公式sn=n2+2n()因为bn=(nn*),an=2n+1,所以bn=因为数列cn满足c1=,cn+1cn=,所以cn+1cn=()cncn+1=()c2c1=(1)以上各式相加得:cn+1c1=(1)=因为c1=,所以所以()因为f(n)=,bn=,cn=,所以f(n)=+因为f(n)=+=+,所以+2f(n)=,当且仅当=,即n=2时等号成立当n=2时,f(n)最小值为22已知圆c经过点a(2,0),b(0,2),且圆心c在直线y=x上,又直线l:y=kx+1与圆c相交于p、q两点(1)求圆c的方程;(2)若=2,求实数k的值;(3)过点(0,4)作动直线m交圆c于e,f两点试问:在以ef为直径的所有圆中,是否存在这样的圆p,使得圆p经过点m(2,0)?若存在,求出圆p的方程;若不存在,请说明理由【考点】直线与圆锥曲线的综合问题【分析】(1)设圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025农业机械深松整地服务合同
- 2025年城市房屋租赁合同范本大全
- 2025商城前期物业管理合同示范文本
- 2025【合同范本】办公设备租赁合同
- 2025标准办公室租赁合同
- 2025劳动合同书版
- 成都学生手册考试题及答案
- 电工计算理论考试题库及答案
- 2025企业劳动合同终止范本(标准版)
- 2025企业管理资料民办幼儿园劳动合同文档范本
- 2025年下半年安徽省港航集团有限公司所属企业社会公开招聘22名考试参考试题及答案解析
- 人教PEP版六年级英语上册全册教案
- 2025福建厦门市公安局同安分局招聘警务辅助人员50人笔试备考试题及答案解析
- 固废回收协议书范本
- 企业创新体系建设课件
- 全文《中国式现代化》PPT
- 园林绿化景观施工组织设计概述
- Britax宝得适百代适儿童汽车安全座椅推车婴童用品全线产品介绍
- 10kV高压开关柜验收规范标准详
- 英才学院《机械工程测试技术》课件07振动的测试
- 生药学-绪论-第一章
评论
0/150
提交评论