勾股定理.doc_第1页
勾股定理.doc_第2页
勾股定理.doc_第3页
勾股定理.doc_第4页
勾股定理.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

。勾股定理编辑gu g dng l勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a2+b2=c2的正整数组(a,b,c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。中文名勾股定理、勾股弦定理外文名Pythagorean theorem 1基本定理编辑勾三股四弦五文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方(也可以理解成两个长边的平方相减与最短边的平方相等)。数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。1推广定理:勾股定理的逆定理。如果 (a,b,c) 是勾股数,它们的正整数倍数,也是勾股数,即nZ*,(na,nb,nc) 也是勾股数。若a,b,c三者互质(它们的最大公约数是 1),它们就称为素勾股数。2历史编辑毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,周髀算经记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理,三国时代的赵爽对周髀算经内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且古巴比伦、古埃及、古中国、古印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的几何原本,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上。他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是近一二百年才有更深入的研究。因此,毕达哥拉斯定理这个名称一时半会儿改不了。不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。古埃及人用这样的方法画直角勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。还有的国家称勾股定理为“平方定理”。在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”商高定理商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理.关于勾股定理的发现,周髀算经上说:故禹之所以治天下者,此数之所由生也。此数指的是勾三股四弦五,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。3勾三股四弦五编辑“勾三股四弦五”是勾股定理的一个特别的例子,由西周初年的商高提出。中国古代称短的直角边为勾,长的直角边为股,斜边为弦。据我国西周时期算书周髀算经记载,约公元前1100年,人们已经知道如果勾是三,股是四,那么弦就是五。即:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。在西方,也有“勾三股四弦五”的定理,周髀算经比西方早了五百多年,这一定理在西方称为“毕达哥拉斯定理”。4勾股数通式和常见勾股素数编辑设mn、m和n均是正整数,a=m2n2,b= 2mn,c=m2+n2若m和n是互质,而且m和n至少有一个是偶数,计算出来的a,b,c就是素勾股数。(若m和n都是奇数,a,b,c就会全是偶数,不符合互质。)所有素勾股数(不是所有勾股数)都可用上述列式当中找出,这亦可推论到数学上存在无穷多的素勾股数。常见的勾股数及几种通式1(3, 4, 5), (6, 8,10) 3n,4n,5n(n是正整数)2(5,12,13) ,( 7,24,25), ( 9,40,41) 2n+ 1, 2n + 2n, 2n + 2n+ 1 (n是正整数)3 (8,15,17), (12,35,37) 2(n+1),2(n+1)1,2(n+1)+1 (n是正整数)4mn,2mn,m+n (m、n均是正整数,且mn)100以内勾股素数列表abc34551213724258151794041116061123537138485166365202129284553335665367785398089485573657297依据几个文明古国都先后研究过这条定理,远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。我国也是最早了解勾股定理的国家之一。三千多年前,周朝数学家就提出“勾三、股四、弦五”,它被记载于周髀算经中。2周髀算经中关于勾股定理的证明:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。”:解释发展脉络数之法出于圆(圆周率三)方(四方),圆出于方(圆形面积=外接正方形圆周率4),方出于矩(正方形源自两边相等的矩),矩出于九九八十一(长乘宽面积计算依自九九乘法表)。周髀算经证明步骤“故折矩,以为句广三,股修四,径隅五。”:开始做图选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。 “既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。 “两矩共长二十有五,是谓积矩。”:此为验算勾方、股方的面积之和,与弦方的面积二十五相等从图形上来看,大正方形减去四个三角形面积后为弦方,再是 大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。注意: 矩,又称曲尺,L型的木匠工具,由长短两根木条组成的直角。古代“矩”指L型曲尺,“矩形”才是“矩”衍生的长方形。 “既方之,外半其一矩”此句有争议。清代四库全书版定为“既方其外半之一矩”,而之前版本多为“既方之外半其一矩”。经陈良佐、李国伟、李继闵、曲安京等学者研究,“既方之,外半其一矩”更符合逻辑。 长指的是面积。古代对不同维度的量纲比较,并没有发明新的术语,而统称“长”。赵爽注称:“两矩者,句股各自乘之实。共长者,并实之数。由于年代久远,周公弦图失传,传世版本只印了赵爽弦图(造纸术在汉代才发明)。所以某些学者误以为商高没有证明(只是说了一段莫名其妙的话),后来赵爽才给出证明。 其实不然,摘录赵爽注释周髀算经时所做的句股圆方图(即赵爽弦图)“句股各自乘,并之为弦实,开方除之即弦。案:弦图又可以句股相乘为朱实二,倍之为朱实四,以句股之差自相乘为中黄实,加差实亦成弦实。”注意“案”中的“弦图又可以”、“亦成弦实”,“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明,于是他给出了新的证明。3用赵爽弦图证明勾股定理的数学描述为:ABDE为AB=BD=DE=AE=c的正方形(右图),很显然:正方形ABDE的面积:SABDE=c2SABDE=4个直角三角形的面积 + 中间方孔的面积SABDE=c2a2+b2=c2(其中,a为勾,b为股,c为弦)简单来说a是3,b是 4,c未知。由于3+4=9+16=25,根据勾股定理,25就是c的平方。再开平方,那么c的长就是5。5几何原本编辑在欧几里得的几何原本一书中提出勾股定理由以下证明后可成立。设ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在正式的证明中,需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。其证明如下:设ABC为一直角三角形,其直角为CAB。几何原本 证明示意图其边为BC、AB和CA,依序绘成矩形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。由于CAB和BAG都是直角,因此C、A和G都是线性对应的。同理可证B、A和H。又因为CBD和FBA皆为直角,所以ABD等于FBC。因为AB和BD分别等于FB和BC,所以ABD必须全等于FBC。因为A与K和L在同一直线上,所以矩形BDLK必须二倍面积于ABD。因为C、A和G在同一直线上,所以正方形BAGF必须二倍面积于FBC。因此四边形BDLK必须有相同的面积。S(正方形BAGF)=(AB)。同理可证,四边形CKLE必须有相同的面积。S(正方形ACIH)=(AC)。把这两个结果相加, (AB)+(AC) =BDBK+KLKC由于BD=KL,BDBK+KLKC=BD(BK+KC) =BDBC由于CBDE是个正方形,因此(AB) + (AC) =(BC)。此证明是于欧几里得几何原本一书第1.47节所提出的。26应用编辑勾股定理是欧氏几何中平面单形三角形边角关系的重要表现形式,虽然是在直角三角形的情形,但基本不失一般性,因此,欧几里得在原本中的第一卷,就以勾股定理为核心展开,一方面奠定欧氏公理体系的架构,另一方面仅仅围绕勾股定理的证明,揭示了面积的自然基础,第一卷共48个命题,以勾股定理(第47个命题)及其逆定理(第48个命题)结束,并在后续第二卷中,自然将勾股定理推广大任意三角形的情形,给出了余弦定理的完整形式。勾股定理是人们认识宇宙中形的规律的自然起点,无论在东西方文明起源过程中,都有着很多动人的故事。中国古代数学著作九章算术的第九章即为勾股术,并且整体上呈现出明确的算法和应用性特点,这与欧几里得原本第一章的毕达哥拉斯定理(勾股弦定理)及其显现出来的推理和纯理性特点恰好对比的煜煜生辉的两极,令人感慨。从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。勾股定理在几何学中的实际应用非常广泛,较早的应用案例有九章算术中的一题:“今有池,方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?答曰:一十二尺。4生活应用:勾股定理在生活中的应用也较广泛,举例说明如下:1.挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;第三,屏幕底部应离观众席所在地面最少122厘米。屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。2.2005年珠峰高度复测行动。测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论